Machine Learning-Driven Detection of Cross-Site Scripting Attacks

I tiakina i:
Ngā taipitopito rārangi puna kōrero
I whakaputaina i:Information vol. 15, no. 7 (2024), p. 420
Kaituhi matua: Alhamyani, Rahmah
Ētahi atu kaituhi: Alshammari, Majid
I whakaputaina:
MDPI AG
Ngā marau:
Urunga tuihono:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Ngā Tūtohu: Tāpirihia he Tūtohu
Kāore He Tūtohu, Me noho koe te mea tuatahi ki te tūtohu i tēnei pūkete!

MARC

LEADER 00000nab a2200000uu 4500
001 3084899906
003 UK-CbPIL
022 |a 2078-2489 
024 7 |a 10.3390/info15070420  |2 doi 
035 |a 3084899906 
045 2 |b d20240101  |b d20241231 
084 |a 231474  |2 nlm 
100 1 |a Alhamyani, Rahmah 
245 1 |a Machine Learning-Driven Detection of Cross-Site Scripting Attacks 
260 |b MDPI AG  |c 2024 
513 |a Journal Article 
520 3 |a The ever-growing web application landscape, fueled by technological advancements, introduces new vulnerabilities to cyberattacks. Cross-site scripting (XSS) attacks pose a significant threat, exploiting the difficulty of distinguishing between benign and malicious scripts within web applications. Traditional detection methods struggle with high false-positive (FP) and false-negative (FN) rates. This research proposes a novel machine learning (ML)-based approach for robust XSS attack detection. We evaluate various models including Random Forest (RF), Logistic Regression (LR), Support Vector Machines (SVMs), Decision Trees (DTs), Extreme Gradient Boosting (XGBoost), Multi-Layer Perceptron (MLP), Convolutional Neural Networks (CNNs), Artificial Neural Networks (ANNs), and ensemble learning. The models are trained on a real-world dataset categorized into benign and malicious traffic, incorporating feature selection methods like Information Gain (IG) and Analysis of Variance (ANOVA) for optimal performance. Our findings reveal exceptional accuracy, with the RF model achieving 99.78% and ensemble models exceeding 99.64%. These results surpass existing methods, demonstrating the effectiveness of the proposed approach in securing web applications while minimizing FPs and FNs. This research offers a significant contribution to the field of web application security by providing a highly accurate and robust ML-based solution for XSS attack detection. 
653 |a Machine learning 
653 |a Threats 
653 |a Traffic information 
653 |a Applications programs 
653 |a Support vector machines 
653 |a Multilayers 
653 |a Artificial neural networks 
653 |a Multilayer perceptrons 
653 |a Neural networks 
653 |a Websites 
653 |a Robustness (mathematics) 
653 |a Variance analysis 
653 |a Queries 
653 |a Structured Query Language-SQL 
653 |a Ensemble learning 
653 |a Servers 
653 |a Decision trees 
700 1 |a Alshammari, Majid 
773 0 |t Information  |g vol. 15, no. 7 (2024), p. 420 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3084899906/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3084899906/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3084899906/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch