Efficient Quantum One-Class Support Vector Machines for Anomaly Detection Using Randomized Measurements and Variable Subsampling

Guardat en:
Dades bibliogràfiques
Publicat a:arXiv.org (Jul 30, 2024), p. n/a
Autor principal: Kölle, Michael
Altres autors: Ahouzi, Afrae, Debus, Pascal, Çetiner, Elif, Müller, Robert, Schuman, Daniëlle, Linnhoff-Popien, Claudia
Publicat:
Cornell University Library, arXiv.org
Matèries:
Accés en línia:Citation/Abstract
Full text outside of ProQuest
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3086456653
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3086456653 
045 0 |b d20240730 
100 1 |a Kölle, Michael 
245 1 |a Efficient Quantum One-Class Support Vector Machines for Anomaly Detection Using Randomized Measurements and Variable Subsampling 
260 |b Cornell University Library, arXiv.org  |c Jul 30, 2024 
513 |a Working Paper 
520 3 |a Quantum one-class support vector machines leverage the advantage of quantum kernel methods for semi-supervised anomaly detection. However, their quadratic time complexity with respect to data size poses challenges when dealing with large datasets. In recent work, quantum randomized measurements kernels and variable subsampling were proposed, as two independent methods to address this problem. The former achieves higher average precision, but suffers from variance, while the latter achieves linear complexity to data size and has lower variance. The current work focuses instead on combining these two methods, along with rotated feature bagging, to achieve linear time complexity both to data size and to number of features. Despite their instability, the resulting models exhibit considerably higher performance and faster training and testing times. 
653 |a Testing time 
653 |a Complexity 
653 |a Anomalies 
653 |a Support vector machines 
653 |a Kernel functions 
653 |a Variance 
653 |a Time measurement 
700 1 |a Ahouzi, Afrae 
700 1 |a Debus, Pascal 
700 1 |a Çetiner, Elif 
700 1 |a Müller, Robert 
700 1 |a Schuman, Daniëlle 
700 1 |a Linnhoff-Popien, Claudia 
773 0 |t arXiv.org  |g (Jul 30, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3086456653/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2407.20753