CAD-Mesher: A Convenient, Accurate, Dense Mesh-based Mapping Module in SLAM for Dynamic Environments

Guardado en:
Detalles Bibliográficos
Publicado en:arXiv.org (Aug 12, 2024), p. n/a
Autor principal: Jia, Yanpeng
Otros Autores: Cao, Fengkui, Wang, Ting, Tang, Yandong, Shao, Shiliang, Liu, Lianqing
Publicado:
Cornell University Library, arXiv.org
Materias:
Acceso en línea:Citation/Abstract
Full text outside of ProQuest
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3092492272
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3092492272 
045 0 |b d20240812 
100 1 |a Jia, Yanpeng 
245 1 |a CAD-Mesher: A Convenient, Accurate, Dense Mesh-based Mapping Module in SLAM for Dynamic Environments 
260 |b Cornell University Library, arXiv.org  |c Aug 12, 2024 
513 |a Working Paper 
520 3 |a Most LiDAR odometry and SLAM systems construct maps in point clouds, which are discrete and sparse when zoomed in, making them not directly suitable for navigation. Mesh maps represent a dense and continuous map format with low memory consumption, which can approximate complex structures with simple elements, attracting significant attention of researchers in recent years. However, most implementations operate under a static environment assumption. In effect, moving objects cause ghosting, potentially degrading the quality of meshing. To address these issues, we propose a plug-and-play meshing module adapting to dynamic environments, which can easily integrate with various LiDAR odometry to generally improve the pose estimation accuracy of odometry. In our meshing module, a novel two-stage coarse-to-fine dynamic removal method is designed to effectively filter dynamic objects, generating consistent, accurate, and dense mesh maps. To our best know, this is the first mesh construction method with explicit dynamic removal. Additionally, conducive to Gaussian process in mesh construction, sliding window-based keyframe aggregation and adaptive downsampling strategies are used to ensure the uniformity of point cloud. We evaluate the localization and mapping accuracy on five publicly available datasets. Both qualitative and quantitative results demonstrate the superiority of our method compared with the state-of-the-art algorithms. The code and introduction video are publicly available at https://yaepiii.github.io/CAD-Mesher/. 
653 |a Maps 
653 |a Gaussian process 
653 |a Simultaneous localization and mapping 
653 |a Algorithms 
653 |a Modules 
653 |a Computer aided design--CAD 
653 |a Pose estimation 
653 |a Lidar 
653 |a State-of-the-art reviews 
653 |a Meshing 
700 1 |a Cao, Fengkui 
700 1 |a Wang, Ting 
700 1 |a Tang, Yandong 
700 1 |a Shao, Shiliang 
700 1 |a Liu, Lianqing 
773 0 |t arXiv.org  |g (Aug 12, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3092492272/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2408.05981