PolarBEVDet: Exploring Polar Representation for Multi-View 3D Object Detection in Bird's-Eye-View

Enregistré dans:
Détails bibliographiques
Publié dans:arXiv.org (Dec 4, 2024), p. n/a
Auteur principal: Yu, Zichen
Autres auteurs: Liu, Quanli, Wang, Wei, Zhang, Liyong, Zhao, Xiaoguang
Publié:
Cornell University Library, arXiv.org
Sujets:
Accès en ligne:Citation/Abstract
Full text outside of ProQuest
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
Description
Résumé:Recently, LSS-based multi-view 3D object detection provides an economical and deployment-friendly solution for autonomous driving. However, all the existing LSS-based methods transform multi-view image features into a Cartesian Bird's-Eye-View(BEV) representation, which does not take into account the non-uniform image information distribution and hardly exploits the view symmetry. In this paper, in order to adapt the image information distribution and preserve the view symmetry by regular convolution, we propose to employ the polar BEV representation to substitute the Cartesian BEV representation. To achieve this, we elaborately tailor three modules: a polar view transformer to generate the polar BEV representation, a polar temporal fusion module for fusing historical polar BEV features and a polar detection head to predict the polar-parameterized representation of the object. In addition, we design a 2D auxiliary detection head and a spatial attention enhancement module to improve the quality of feature extraction in perspective view and BEV, respectively. Finally, we integrate the above improvements into a novel multi-view 3D object detector, PolarBEVDet. Experiments on nuScenes show that PolarBEVDet achieves the superior performance. The code is available at https://github.com/Yzichen/PolarBEVDet.git.(This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible)
ISSN:2331-8422
Source:Engineering Database