Low-Temperature Oxidation Induced Phase Evolution with Gradient Magnetic Heterointerfaces for Superior Electromagnetic Wave Absorption

Guardat en:
Dades bibliogràfiques
Publicat a:Nano-Micro Letters vol. 17, no. 1 (Dec 2025), p. 7
Autor principal: He, Zizhuang
Altres autors: Shi, Lingzi, Sun, Ran, Ding, Lianfei, He, Mukun, Li, Jiaming, Guo, Hua, Gao, Tiande, Liu, Panbo
Publicat:
Springer Nature B.V.
Matèries:
Accés en línia:Citation/Abstract
Full Text
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!
Descripció
Resum:Highlights<list list-type="bullet"><list-item></list-item>Co/Co3O4@NC nanosheets with gradient magnetic heterointerfaces have been fabricated by the high-temperature carbonization/low-temperature oxidation processes.<list-item>Experimental and theoretical simulation results indicate that magnetic heterointerfaces engineering is beneficial for optimizing impedance matching and promoting electromagnetic wave absorption.</list-item><list-item>Gradient magnetic heterointerfaces with magnetic-heteroatomic components realize the adjustment of interfacial polarization, magnetic coupling, and long-range magnetic diffraction.</list-item>Gradient magnetic heterointerfaces have injected infinite vitality in optimizing impedance matching, adjusting dielectric/magnetic resonance and promoting electromagnetic (EM) wave absorption, but still exist a significant challenging in regulating local phase evolution. Herein, accordion-shaped Co/Co3O4@N-doped carbon nanosheets (Co/Co3O4@NC) with gradient magnetic heterointerfaces have been fabricated via the cooperative high-temperature carbonization and low-temperature oxidation process. The results indicate that the surface epitaxial growth of crystal Co3O4 domains on local Co nanoparticles realizes the adjustment of magnetic-heteroatomic components, which are beneficial for optimizing impedance matching and interfacial polarization. Moreover, gradient magnetic heterointerfaces simultaneously realize magnetic coupling, and long-range magnetic diffraction. Specifically, the synthesized Co/Co3O4@NC absorbents display the strong electromagnetic wave attenuation capability of − 53.5&#xa0;dB at a thickness of 3.0&#xa0;mm with an effective absorption bandwidth of 5.36&#xa0;GHz, both are superior to those of single magnetic domains embedded in carbon matrix. This design concept provides us an inspiration in optimizing interfacial polarization, regulating magnetic coupling and promoting electromagnetic wave absorption.
ISSN:2311-6706
2150-5551
DOI:10.1007/s40820-024-01516-z
Font:Materials Science Database