Millinovae: A New Class of Transient Supersoft X-ray Sources without a Classical Nova Eruption

Guardado en:
Detalles Bibliográficos
Publicado en:arXiv.org (Dec 7, 2024), p. n/a
Autor principal: Mróz, Przemek
Otros Autores: Król, Krzysztof, Szegedi, Hélène, Charles, Philip, Page, Kim L, Udalski, Andrzej, Buckley, David A H, Dewangan, Gulab, Meintjes, Pieter, Szymański, Michał K, Soszyński, Igor, Pietrukowicz, Paweł, Kozłowski, Szymon, Poleski, Radosław, Skowron, Jan, Ulaczyk, Krzysztof, Gromadzki, Mariusz, Rybicki, Krzysztof, Iwanek, Patryk, Wrona, Marcin, Mróz, Mateusz J
Publicado:
Cornell University Library, arXiv.org
Materias:
Acceso en línea:Citation/Abstract
Full text outside of ProQuest
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Resumen:Some accreting binary systems containing a white dwarf (such as classical novae or persistent supersoft sources) are seen to emit low-energy X-rays with temperatures of ~10^6 K and luminosities exceeding 10^35 erg/s. These X-rays are thought to originate from nuclear burning on the white dwarf surface, either caused by a thermonuclear runaway (classical novae) or a high mass-accretion rate that sustains steady nuclear burning (persistent sources). The discovery of transient supersoft X-rays from ASASSN-16oh challenged these ideas, as no clear signatures of mass ejection indicative of a classical nova eruption were detected, and the origin of these X-rays remains controversial. It was unclear whether this star was one of a kind or representative of a larger, as yet undiscovered, group. Here, we present the discovery of 29 stars located in the direction of the Magellanic Clouds exhibiting long-duration, symmetrical optical outbursts similar to that seen in ASASSN-16oh. We observed one of these objects during an optical outburst and found it to be emitting transient supersoft X-rays, while no signatures of mass ejection (indicative of a classical nova eruption) were detected. We therefore propose that these objects form a homogeneous group of transient supersoft X-ray sources, which we dub ``millinovae'' because their optical luminosities are approximately a thousand times fainter than those of ordinary classical novae.
ISSN:2331-8422
DOI:10.3847/2041-8213/ad969b
Fuente:Engineering Database