Algebraic effects and handlers for arrows

Guardado en:
Detalles Bibliográficos
Publicado en:Journal of Functional Programming vol. 34 (Oct 2024)
Autor principal: Sanada, Takahiro
Publicado:
Cambridge University Press
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Resumen:We present an arrow calculus with operations and handlers and its operational and denotational semantics. The calculus is an extension of <xref rid="ref18" ref-type="bibr">Lindley, Wadler and Yallop’s arrow calculus.The denotational semantics is given using a strong (pro)monad <inline-formula><inline-graphic mime-subtype="png" xlink:href="S0956796824000066_inline1.png" />\(\mathcal{A}\)</inline-formula> in the bicategory of categories and profunctors. The construction of this strong monad <inline-formula><inline-graphic mime-subtype="png" xlink:href="S0956796824000066_inline2.png" />\(\mathcal{A}\)</inline-formula> is not trivial because of a size problem. To build denotational semantics, we investigate what <inline-formula><inline-graphic mime-subtype="png" xlink:href="S0956796824000066_inline3.png" />\(\mathcal{A}\)</inline-formula>-algebras are, and a handler is interpreted as an <inline-formula><inline-graphic mime-subtype="png" xlink:href="S0956796824000066_inline4.png" />\(\mathcal{A}\)</inline-formula>-homomorphisms between <inline-formula><inline-graphic mime-subtype="png" xlink:href="S0956796824000066_inline5.png" />\(\mathcal{A}\)</inline-formula>-algebras.The syntax and operational semantics are derived from the observations on <inline-formula><inline-graphic mime-subtype="png" xlink:href="S0956796824000066_inline6.png" />\(\mathcal{A}\)</inline-formula>-algebras. We prove the soundness and adequacy theorem of the operational semantics for the denotational semantics.
ISSN:0956-7968
1469-7653
DOI:10.1017/S0956796824000066
Fuente:Advanced Technologies & Aerospace Database