Algebraic effects and handlers for arrows
Guardado en:
| Publicado en: | Journal of Functional Programming vol. 34 (Oct 2024) |
|---|---|
| Autor principal: | |
| Publicado: |
Cambridge University Press
|
| Materias: | |
| Acceso en línea: | Citation/Abstract Full Text - PDF |
| Etiquetas: |
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
| Resumen: | We present an arrow calculus with operations and handlers and its operational and denotational semantics. The calculus is an extension of <xref rid="ref18" ref-type="bibr">Lindley, Wadler and Yallop’s arrow calculus.The denotational semantics is given using a strong (pro)monad <inline-formula><inline-graphic mime-subtype="png" xlink:href="S0956796824000066_inline1.png" />\(\mathcal{A}\)</inline-formula> in the bicategory of categories and profunctors. The construction of this strong monad <inline-formula><inline-graphic mime-subtype="png" xlink:href="S0956796824000066_inline2.png" />\(\mathcal{A}\)</inline-formula> is not trivial because of a size problem. To build denotational semantics, we investigate what <inline-formula><inline-graphic mime-subtype="png" xlink:href="S0956796824000066_inline3.png" />\(\mathcal{A}\)</inline-formula>-algebras are, and a handler is interpreted as an <inline-formula><inline-graphic mime-subtype="png" xlink:href="S0956796824000066_inline4.png" />\(\mathcal{A}\)</inline-formula>-homomorphisms between <inline-formula><inline-graphic mime-subtype="png" xlink:href="S0956796824000066_inline5.png" />\(\mathcal{A}\)</inline-formula>-algebras.The syntax and operational semantics are derived from the observations on <inline-formula><inline-graphic mime-subtype="png" xlink:href="S0956796824000066_inline6.png" />\(\mathcal{A}\)</inline-formula>-algebras. We prove the soundness and adequacy theorem of the operational semantics for the denotational semantics. |
|---|---|
| ISSN: | 0956-7968 1469-7653 |
| DOI: | 10.1017/S0956796824000066 |
| Fuente: | Advanced Technologies & Aerospace Database |