Algebraic effects and handlers for arrows

Guardado en:
Detalles Bibliográficos
Publicado en:Journal of Functional Programming vol. 34 (Oct 2024)
Autor principal: Sanada, Takahiro
Publicado:
Cambridge University Press
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3112342489
003 UK-CbPIL
022 |a 0956-7968 
022 |a 1469-7653 
024 7 |a 10.1017/S0956796824000066  |2 doi 
035 |a 3112342489 
045 2 |b d20241001  |b d20241031 
084 |a 79046  |2 nlm 
100 1 |a Sanada, Takahiro  |u Research Institute for Mathematical Sciences, Kyoto University, Japan, (e-mail: tsanada@fpu.ac.jp ) 
245 1 |a Algebraic effects and handlers for arrows 
260 |b Cambridge University Press  |c Oct 2024 
513 |a Journal Article 
520 3 |a We present an arrow calculus with operations and handlers and its operational and denotational semantics. The calculus is an extension of <xref rid="ref18" ref-type="bibr">Lindley, Wadler and Yallop’s arrow calculus.The denotational semantics is given using a strong (pro)monad <inline-formula><inline-graphic mime-subtype="png" xlink:href="S0956796824000066_inline1.png" />\(\mathcal{A}\)</inline-formula> in the bicategory of categories and profunctors. The construction of this strong monad <inline-formula><inline-graphic mime-subtype="png" xlink:href="S0956796824000066_inline2.png" />\(\mathcal{A}\)</inline-formula> is not trivial because of a size problem. To build denotational semantics, we investigate what <inline-formula><inline-graphic mime-subtype="png" xlink:href="S0956796824000066_inline3.png" />\(\mathcal{A}\)</inline-formula>-algebras are, and a handler is interpreted as an <inline-formula><inline-graphic mime-subtype="png" xlink:href="S0956796824000066_inline4.png" />\(\mathcal{A}\)</inline-formula>-homomorphisms between <inline-formula><inline-graphic mime-subtype="png" xlink:href="S0956796824000066_inline5.png" />\(\mathcal{A}\)</inline-formula>-algebras.The syntax and operational semantics are derived from the observations on <inline-formula><inline-graphic mime-subtype="png" xlink:href="S0956796824000066_inline6.png" />\(\mathcal{A}\)</inline-formula>-algebras. We prove the soundness and adequacy theorem of the operational semantics for the denotational semantics. 
653 |a Circuits 
653 |a Calculus 
653 |a Homomorphisms 
653 |a Simulation 
653 |a Programming languages 
653 |a Semantics 
653 |a Algebra 
653 |a Syntax 
653 |a Boolean 
773 0 |t Journal of Functional Programming  |g vol. 34 (Oct 2024) 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3112342489/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3112342489/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch