Algebraic effects and handlers for arrows
Guardado en:
| Publicado en: | Journal of Functional Programming vol. 34 (Oct 2024) |
|---|---|
| Autor principal: | |
| Publicado: |
Cambridge University Press
|
| Materias: | |
| Acceso en línea: | Citation/Abstract Full Text - PDF |
| Etiquetas: |
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
MARC
| LEADER | 00000nab a2200000uu 4500 | ||
|---|---|---|---|
| 001 | 3112342489 | ||
| 003 | UK-CbPIL | ||
| 022 | |a 0956-7968 | ||
| 022 | |a 1469-7653 | ||
| 024 | 7 | |a 10.1017/S0956796824000066 |2 doi | |
| 035 | |a 3112342489 | ||
| 045 | 2 | |b d20241001 |b d20241031 | |
| 084 | |a 79046 |2 nlm | ||
| 100 | 1 | |a Sanada, Takahiro |u Research Institute for Mathematical Sciences, Kyoto University, Japan, (e-mail: tsanada@fpu.ac.jp ) | |
| 245 | 1 | |a Algebraic effects and handlers for arrows | |
| 260 | |b Cambridge University Press |c Oct 2024 | ||
| 513 | |a Journal Article | ||
| 520 | 3 | |a We present an arrow calculus with operations and handlers and its operational and denotational semantics. The calculus is an extension of <xref rid="ref18" ref-type="bibr">Lindley, Wadler and Yallop’s arrow calculus.The denotational semantics is given using a strong (pro)monad <inline-formula><inline-graphic mime-subtype="png" xlink:href="S0956796824000066_inline1.png" />\(\mathcal{A}\)</inline-formula> in the bicategory of categories and profunctors. The construction of this strong monad <inline-formula><inline-graphic mime-subtype="png" xlink:href="S0956796824000066_inline2.png" />\(\mathcal{A}\)</inline-formula> is not trivial because of a size problem. To build denotational semantics, we investigate what <inline-formula><inline-graphic mime-subtype="png" xlink:href="S0956796824000066_inline3.png" />\(\mathcal{A}\)</inline-formula>-algebras are, and a handler is interpreted as an <inline-formula><inline-graphic mime-subtype="png" xlink:href="S0956796824000066_inline4.png" />\(\mathcal{A}\)</inline-formula>-homomorphisms between <inline-formula><inline-graphic mime-subtype="png" xlink:href="S0956796824000066_inline5.png" />\(\mathcal{A}\)</inline-formula>-algebras.The syntax and operational semantics are derived from the observations on <inline-formula><inline-graphic mime-subtype="png" xlink:href="S0956796824000066_inline6.png" />\(\mathcal{A}\)</inline-formula>-algebras. We prove the soundness and adequacy theorem of the operational semantics for the denotational semantics. | |
| 653 | |a Circuits | ||
| 653 | |a Calculus | ||
| 653 | |a Homomorphisms | ||
| 653 | |a Simulation | ||
| 653 | |a Programming languages | ||
| 653 | |a Semantics | ||
| 653 | |a Algebra | ||
| 653 | |a Syntax | ||
| 653 | |a Boolean | ||
| 773 | 0 | |t Journal of Functional Programming |g vol. 34 (Oct 2024) | |
| 786 | 0 | |d ProQuest |t Advanced Technologies & Aerospace Database | |
| 856 | 4 | 1 | |3 Citation/Abstract |u https://www.proquest.com/docview/3112342489/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch |
| 856 | 4 | 0 | |3 Full Text - PDF |u https://www.proquest.com/docview/3112342489/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch |