Enhancing visual autonomous navigation in row-based crops with effective synthetic data generation

Salvato in:
Dettagli Bibliografici
Pubblicato in:Precision Agriculture vol. 25, no. 6 (Dec 2024), p. 2881
Autore principale: Martini, Mauro
Altri autori: Ambrosio, Marco, Navone, Alessandro, Tuberga, Brenno, Chiaberge, Marcello
Pubblicazione:
Springer Nature B.V.
Soggetti:
Accesso online:Citation/Abstract
Full Text - PDF
Tags: Aggiungi Tag
Nessun Tag, puoi essere il primo ad aggiungerne!!

MARC

LEADER 00000nab a2200000uu 4500
001 3129053302
003 UK-CbPIL
022 |a 1385-2256 
022 |a 1573-1618 
024 7 |a 10.1007/s11119-024-10157-6  |2 doi 
035 |a 3129053302 
045 2 |b d20241201  |b d20241231 
084 |a 108509  |2 nlm 
100 1 |a Martini, Mauro  |u Politecnico di Torino, Department of Electronics and Telecommunications, Turin, Italy (GRID:grid.4800.c) (ISNI:0000 0004 1937 0343) 
245 1 |a Enhancing visual autonomous navigation in row-based crops with effective synthetic data generation 
260 |b Springer Nature B.V.  |c Dec 2024 
513 |a Journal Article 
520 3 |a IntroductionService robotics is recently enhancing precision agriculture enabling many automated processes based on efficient autonomous navigation solutions. However, data generation and in-field validation campaigns hinder the progress of large-scale autonomous platforms. Simulated environments and deep visual perception are spreading as successful tools to speed up the development of robust navigation with low-cost RGB-D cameras.Materials and methodsIn this context, the contribution of this work resides in a complete framework to fully exploit synthetic data for a robust visual control of mobile robots. A wide realistic multi-crops dataset is accurately generated to train deep semantic segmentation networks and enabling robust performance in challenging real-world conditions. An automatic parametric approach enables an easy customization of virtual field geometry and features for a fast reliable evaluation of navigation algorithms.Results and conclusionThe high quality of the generated synthetic dataset is demonstrated by an extensive experimentation with real crops images and benchmarking the resulting robot navigation both in virtual and real fields with relevant metrics. 
653 |a Robotics 
653 |a Datasets 
653 |a Visual perception 
653 |a Crops 
653 |a Robust control 
653 |a Image segmentation 
653 |a Visual fields 
653 |a Image processing 
653 |a Autonomous navigation 
653 |a Semantic segmentation 
653 |a Virtual networks 
653 |a Image quality 
653 |a Visual perception driven algorithms 
653 |a Visual control 
653 |a Robot control 
653 |a Synthetic data 
653 |a Deep learning 
653 |a Food 
653 |a Robots 
653 |a Localization 
653 |a Agriculture 
653 |a Simulation 
653 |a 3-D graphics 
653 |a Farming 
653 |a Artificial intelligence 
653 |a Algorithms 
653 |a Semantics 
653 |a Precision agriculture 
653 |a Environmental 
700 1 |a Ambrosio, Marco  |u Politecnico di Torino, Department of Electronics and Telecommunications, Turin, Italy (GRID:grid.4800.c) (ISNI:0000 0004 1937 0343) 
700 1 |a Navone, Alessandro  |u Politecnico di Torino, Department of Electronics and Telecommunications, Turin, Italy (GRID:grid.4800.c) (ISNI:0000 0004 1937 0343) 
700 1 |a Tuberga, Brenno  |u Politecnico di Torino, Department of Electronics and Telecommunications, Turin, Italy (GRID:grid.4800.c) (ISNI:0000 0004 1937 0343) 
700 1 |a Chiaberge, Marcello  |u Politecnico di Torino, Department of Electronics and Telecommunications, Turin, Italy (GRID:grid.4800.c) (ISNI:0000 0004 1937 0343) 
773 0 |t Precision Agriculture  |g vol. 25, no. 6 (Dec 2024), p. 2881 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3129053302/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3129053302/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch