Robust Optimal Contribution Selection
保存先:
| 出版年: | arXiv.org (Dec 3, 2024), p. n/a |
|---|---|
| 第一著者: | |
| その他の著者: | , , , |
| 出版事項: |
Cornell University Library, arXiv.org
|
| 主題: | |
| オンライン・アクセス: | Citation/Abstract Full text outside of ProQuest |
| タグ: |
タグなし, このレコードへの初めてのタグを付けませんか!
|
MARC
| LEADER | 00000nab a2200000uu 4500 | ||
|---|---|---|---|
| 001 | 3141258040 | ||
| 003 | UK-CbPIL | ||
| 022 | |a 2331-8422 | ||
| 035 | |a 3141258040 | ||
| 045 | 0 | |b d20241203 | |
| 100 | 1 | |a Fogg, Josh | |
| 245 | 1 | |a Robust Optimal Contribution Selection | |
| 260 | |b Cornell University Library, arXiv.org |c Dec 3, 2024 | ||
| 513 | |a Working Paper | ||
| 520 | 3 | |a Optimal contribution selection (OCS) is a selective breeding method that manages the conversion of genetic variation into genetic gain to facilitate short-term competitiveness and long-term sustainability in breeding programmes. Traditional approaches to OCS do not account for uncertainty in input data, which is always present and challenges optimization and practical decision making. Here we use concepts from robust optimization to derive a robust OCS problem and develop two ways to solve the problem using either conic optimization or sequential quadratic programming. We have developed the open-source Python package 'robustocs' that leverages the Gurobi and HiGHS solvers to carry out these methods. Our testing shows favourable performance when solving the robust OCS problem using sequential quadratic programming and the HiGHS solver. | |
| 653 | |a Solvers | ||
| 653 | |a Python | ||
| 653 | |a Robustness | ||
| 653 | |a Quadratic programming | ||
| 653 | |a Optimization | ||
| 700 | 1 | |a Ortiz, Jaime | |
| 700 | 1 | |a Pocrnić, Ivan | |
| 700 | 1 | |a Hall, J A Julian | |
| 700 | 1 | |a Gorjanc, Gregor | |
| 773 | 0 | |t arXiv.org |g (Dec 3, 2024), p. n/a | |
| 786 | 0 | |d ProQuest |t Engineering Database | |
| 856 | 4 | 1 | |3 Citation/Abstract |u https://www.proquest.com/docview/3141258040/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch |
| 856 | 4 | 0 | |3 Full text outside of ProQuest |u http://arxiv.org/abs/2412.02888 |