Robust Optimal Contribution Selection

Guardado en:
Detalles Bibliográficos
Publicado en:arXiv.org (Dec 3, 2024), p. n/a
Autor principal: Fogg, Josh
Otros Autores: Ortiz, Jaime, Pocrnić, Ivan, Hall, J A Julian, Gorjanc, Gregor
Publicado:
Cornell University Library, arXiv.org
Materias:
Acceso en línea:Citation/Abstract
Full text outside of ProQuest
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Resumen:Optimal contribution selection (OCS) is a selective breeding method that manages the conversion of genetic variation into genetic gain to facilitate short-term competitiveness and long-term sustainability in breeding programmes. Traditional approaches to OCS do not account for uncertainty in input data, which is always present and challenges optimization and practical decision making. Here we use concepts from robust optimization to derive a robust OCS problem and develop two ways to solve the problem using either conic optimization or sequential quadratic programming. We have developed the open-source Python package 'robustocs' that leverages the Gurobi and HiGHS solvers to carry out these methods. Our testing shows favourable performance when solving the robust OCS problem using sequential quadratic programming and the HiGHS solver.
ISSN:2331-8422
Fuente:Engineering Database