Certified Learning of Incremental ISS Controllers for Unknown Nonlinear Polynomial Dynamics
محفوظ في:
| الحاوية / القاعدة: | arXiv.org (Dec 5, 2024), p. n/a |
|---|---|
| المؤلف الرئيسي: | |
| مؤلفون آخرون: | , |
| منشور في: |
Cornell University Library, arXiv.org
|
| الموضوعات: | |
| الوصول للمادة أونلاين: | Citation/Abstract Full text outside of ProQuest |
| الوسوم: |
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
| مستخلص: | Incremental input-to-state stability (delta-ISS) offers a robust framework to ensure that small input variations result in proportionally minor deviations in the state of a nonlinear system. This property is essential in practical applications where input precision cannot be guaranteed. However, analyzing delta-ISS demands detailed knowledge of system dynamics to assess the state's incremental response to input changes, posing a challenge in real-world scenarios where mathematical models are unknown. In this work, we develop a data-driven approach to design delta-ISS Lyapunov functions together with their corresponding delta-ISS controllers for continuous-time input-affine nonlinear systems with polynomial dynamics, ensuring the delta-ISS property is achieved without requiring knowledge of the system dynamics. In our data-driven scheme, we collect only two sets of input-state trajectories from sufficiently excited dynamics, as introduced by Willems et al.'s fundamental lemma. By fulfilling a specific rank condition, we design delta-ISS controllers using the collected samples through formulating a sum-of-squares optimization program. The effectiveness of our data-driven approach is evidenced by its application on a physical case study. |
|---|---|
| تدمد: | 2331-8422 |
| المصدر: | Engineering Database |