A Noise is Worth Diffusion Guidance

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org (Dec 5, 2024), p. n/a
1. Verfasser: Ahn, Donghoon
Weitere Verfasser: Kang, Jiwon, Lee, Sanghyun, Min, Jaewon, Kim, Minjae, Jang, Wooseok, Cho, Hyoungwon, Sayak, Paul, Kim, SeonHwa, Cha, Eunju, Jin, Kyong Hwan, Kim, Seungryong
Veröffentlicht:
Cornell University Library, arXiv.org
Schlagworte:
Online-Zugang:Citation/Abstract
Full text outside of ProQuest
Tags: Tag hinzufügen
Keine Tags, Fügen Sie das erste Tag hinzu!
Beschreibung
Abstract:Diffusion models excel in generating high-quality images. However, current diffusion models struggle to produce reliable images without guidance methods, such as classifier-free guidance (CFG). Are guidance methods truly necessary? Observing that noise obtained via diffusion inversion can reconstruct high-quality images without guidance, we focus on the initial noise of the denoising pipeline. By mapping Gaussian noise to `guidance-free noise', we uncover that small low-magnitude low-frequency components significantly enhance the denoising process, removing the need for guidance and thus improving both inference throughput and memory. Expanding on this, we propose \ours, a novel method that replaces guidance methods with a single refinement of the initial noise. This refined noise enables high-quality image generation without guidance, within the same diffusion pipeline. Our noise-refining model leverages efficient noise-space learning, achieving rapid convergence and strong performance with just 50K text-image pairs. We validate its effectiveness across diverse metrics and analyze how refined noise can eliminate the need for guidance. See our project page: https://cvlab-kaist.github.io/NoiseRefine/.
ISSN:2331-8422
Quelle:Engineering Database