A Noise is Worth Diffusion Guidance
Guardado en:
| 发表在: | arXiv.org (Dec 5, 2024), p. n/a |
|---|---|
| 主要作者: | |
| 其他作者: | , , , , , , , , , , |
| 出版: |
Cornell University Library, arXiv.org
|
| 主题: | |
| 在线阅读: | Citation/Abstract Full text outside of ProQuest |
| 标签: |
没有标签, 成为第一个标记此记录!
|
| 摘要: | Diffusion models excel in generating high-quality images. However, current diffusion models struggle to produce reliable images without guidance methods, such as classifier-free guidance (CFG). Are guidance methods truly necessary? Observing that noise obtained via diffusion inversion can reconstruct high-quality images without guidance, we focus on the initial noise of the denoising pipeline. By mapping Gaussian noise to `guidance-free noise', we uncover that small low-magnitude low-frequency components significantly enhance the denoising process, removing the need for guidance and thus improving both inference throughput and memory. Expanding on this, we propose \ours, a novel method that replaces guidance methods with a single refinement of the initial noise. This refined noise enables high-quality image generation without guidance, within the same diffusion pipeline. Our noise-refining model leverages efficient noise-space learning, achieving rapid convergence and strong performance with just 50K text-image pairs. We validate its effectiveness across diverse metrics and analyze how refined noise can eliminate the need for guidance. See our project page: https://cvlab-kaist.github.io/NoiseRefine/. |
|---|---|
| ISSN: | 2331-8422 |
| Fuente: | Engineering Database |