PAFFA: Premeditated Actions For Fast Agents

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org (Dec 10, 2024), p. n/a
1. Verfasser: Shambhavi Krishna
Weitere Verfasser: Chen, Zheng, Kumar, Vaibhav, Huang, Xiaojiang, Li, Yingjie, Yang, Fan, Li, Xiang
Veröffentlicht:
Cornell University Library, arXiv.org
Schlagworte:
Online-Zugang:Citation/Abstract
Full text outside of ProQuest
Tags: Tag hinzufügen
Keine Tags, Fügen Sie das erste Tag hinzu!
Beschreibung
Abstract:Modern AI assistants have made significant progress in natural language understanding and API/tool integration, with emerging efforts to incorporate diverse interfaces (such as Web interfaces) for enhanced scalability and functionality. However, current approaches that heavily rely on repeated LLM-driven HTML parsing are computationally expensive and error-prone, particularly when handling dynamic web interfaces and multi-step tasks. To overcome these challenges, we introduce PAFFA (Premeditated Actions For Fast Agents), a framework designed to enhance web interaction capabilities through an Action API Library of reusable, verified browser interaction functions. By pre-computing interaction patterns and employing two core methodologies - "Dist-Map" for task-agnostic element distillation and "Unravel" for incremental page-wise exploration - PAFFA reduces inference calls by 87% while maintaining robust performance even as website structures evolve. This framework accelerates multi-page task execution and offers a scalable solution to advance autonomous web agent research.
ISSN:2331-8422
Quelle:Engineering Database