PAFFA: Premeditated Actions For Fast Agents
-д хадгалсан:
| -д хэвлэсэн: | arXiv.org (Dec 10, 2024), p. n/a |
|---|---|
| Үндсэн зохиолч: | |
| Бусад зохиолчид: | , , , , , |
| Хэвлэсэн: |
Cornell University Library, arXiv.org
|
| Нөхцлүүд: | |
| Онлайн хандалт: | Citation/Abstract Full text outside of ProQuest |
| Шошгууд: |
Шошго байхгүй, Энэхүү баримтыг шошголох эхний хүн болох!
|
| Хураангуй: | Modern AI assistants have made significant progress in natural language understanding and API/tool integration, with emerging efforts to incorporate diverse interfaces (such as Web interfaces) for enhanced scalability and functionality. However, current approaches that heavily rely on repeated LLM-driven HTML parsing are computationally expensive and error-prone, particularly when handling dynamic web interfaces and multi-step tasks. To overcome these challenges, we introduce PAFFA (Premeditated Actions For Fast Agents), a framework designed to enhance web interaction capabilities through an Action API Library of reusable, verified browser interaction functions. By pre-computing interaction patterns and employing two core methodologies - "Dist-Map" for task-agnostic element distillation and "Unravel" for incremental page-wise exploration - PAFFA reduces inference calls by 87% while maintaining robust performance even as website structures evolve. This framework accelerates multi-page task execution and offers a scalable solution to advance autonomous web agent research. |
|---|---|
| ISSN: | 2331-8422 |
| Эх сурвалж: | Engineering Database |