Video forgery detection and localization using optimized attention squeezenet adversarial network

Zapisane w:
Opis bibliograficzny
Wydane w:Multimedia Tools and Applications vol. 83, no. 40 (Dec 2024), p. 87697
Wydane:
Springer Nature B.V.
Hasła przedmiotowe:
Dostęp online:Citation/Abstract
Full Text - PDF
Etykiety: Dodaj etykietę
Nie ma etykietki, Dołącz pierwszą etykiete!

MARC

LEADER 00000nab a2200000uu 4500
001 3144200732
003 UK-CbPIL
022 |a 1380-7501 
022 |a 1573-7721 
024 7 |a 10.1007/s11042-024-18774-z  |2 doi 
035 |a 3144200732 
045 2 |b d20241201  |b d20241231 
084 |a 108528  |2 nlm 
245 1 |a Video forgery detection and localization using optimized attention squeezenet adversarial network 
260 |b Springer Nature B.V.  |c Dec 2024 
513 |a Journal Article 
520 3 |a Video forgery (VF) is manipulating fake videos by modifying, coordinating or generating new content in the video sequence. The generated fake videos pose a great threat to social stability, enhancing the necessity to introduce fast, efficient video forgery identification techniques. Many existing studies reported effective techniques to detect forged videos at minimal complexity. However, existing techniques failed to obtain global assessments of the entire video frames and are less robust against fast-moving objects. Thus, this article proposes a novel optimized trident encoder-decoder network with adaptive deep learning models for detecting and localizing video forgeries. Initially, the input videos are converted into multiple frames and forwarded to the encoder part of the detection network. In this encoder part, an Attention SqueezeNet (AttSNet) is proposed for obtaining three branches of frames: pristine, forgery and both (pristine and forgery). Then, the bi-directional long short-term memory (Bi-LSTM) model is introduced in the decoder part to accurately detect the presence/absence of forgery from the given video frames. After detection, the forged region is analyzed by proposing a novel Adaptive ResNet (A-ResNet) with a generative adversarial network (GAN) model in the localization process. Here, the features from forgery-detected video frames are extracted by employing A-ResNet and the forged regions are localized effectively by the GAN method. In addition, this study proposes a hybridized wild-hunt (WiH) optimizer technique to update the weight parameters of the proposed model. The proposed method is implemented in the Python platform, and the whole experiment is processed with a face forensic database. In the experimental section, the accuracy of 95.4% and 96.1% and the time complexity of 1.43 s are obtained for detection and localization, respectively. 
653 |a Forgery 
653 |a Image manipulation 
653 |a Encoders-Decoders 
653 |a Complexity 
653 |a Frames (data processing) 
653 |a Video 
653 |a Localization 
653 |a Moving object recognition 
653 |a Deception 
653 |a Generative adversarial networks 
773 0 |t Multimedia Tools and Applications  |g vol. 83, no. 40 (Dec 2024), p. 87697 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3144200732/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3144200732/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch