A Library for Learning Neural Operators

-д хадгалсан:
Номзүйн дэлгэрэнгүй
-д хэвлэсэн:arXiv.org (Dec 17, 2024), p. n/a
Үндсэн зохиолч: Kossaifi, Jean
Бусад зохиолчид: Kovachki, Nikola, Li, Zongyi, Pitt, David, Liu-Schiaffini, Miguel, George, Robert Joseph, Bonev, Boris, Azizzadenesheli, Kamyar, Berner, Julius, Anandkumar, Anima
Хэвлэсэн:
Cornell University Library, arXiv.org
Нөхцлүүд:
Онлайн хандалт:Citation/Abstract
Full text outside of ProQuest
Шошгууд: Шошго нэмэх
Шошго байхгүй, Энэхүү баримтыг шошголох эхний хүн болох!
Тодорхойлолт
Хураангуй:We present NeuralOperator, an open-source Python library for operator learning. Neural operators generalize neural networks to maps between function spaces instead of finite-dimensional Euclidean spaces. They can be trained and inferenced on input and output functions given at various discretizations, satisfying a discretization convergence properties. Built on top of PyTorch, NeuralOperator provides all the tools for training and deploying neural operator models, as well as developing new ones, in a high-quality, tested, open-source package. It combines cutting-edge models and customizability with a gentle learning curve and simple user interface for newcomers.
ISSN:2331-8422
Эх сурвалж:Engineering Database