A Library for Learning Neural Operators
-д хадгалсан:
| -д хэвлэсэн: | arXiv.org (Dec 17, 2024), p. n/a |
|---|---|
| Үндсэн зохиолч: | |
| Бусад зохиолчид: | , , , , , , , , |
| Хэвлэсэн: |
Cornell University Library, arXiv.org
|
| Нөхцлүүд: | |
| Онлайн хандалт: | Citation/Abstract Full text outside of ProQuest |
| Шошгууд: |
Шошго байхгүй, Энэхүү баримтыг шошголох эхний хүн болох!
|
| Хураангуй: | We present NeuralOperator, an open-source Python library for operator learning. Neural operators generalize neural networks to maps between function spaces instead of finite-dimensional Euclidean spaces. They can be trained and inferenced on input and output functions given at various discretizations, satisfying a discretization convergence properties. Built on top of PyTorch, NeuralOperator provides all the tools for training and deploying neural operator models, as well as developing new ones, in a high-quality, tested, open-source package. It combines cutting-edge models and customizability with a gentle learning curve and simple user interface for newcomers. |
|---|---|
| ISSN: | 2331-8422 |
| Эх сурвалж: | Engineering Database |