A Library for Learning Neural Operators
Guardat en:
| Publicat a: | arXiv.org (Dec 17, 2024), p. n/a |
|---|---|
| Autor principal: | |
| Altres autors: | , , , , , , , , |
| Publicat: |
Cornell University Library, arXiv.org
|
| Matèries: | |
| Accés en línia: | Citation/Abstract Full text outside of ProQuest |
| Etiquetes: |
Sense etiquetes, Sigues el primer a etiquetar aquest registre!
|
| Resum: | We present NeuralOperator, an open-source Python library for operator learning. Neural operators generalize neural networks to maps between function spaces instead of finite-dimensional Euclidean spaces. They can be trained and inferenced on input and output functions given at various discretizations, satisfying a discretization convergence properties. Built on top of PyTorch, NeuralOperator provides all the tools for training and deploying neural operator models, as well as developing new ones, in a high-quality, tested, open-source package. It combines cutting-edge models and customizability with a gentle learning curve and simple user interface for newcomers. |
|---|---|
| ISSN: | 2331-8422 |
| Font: | Engineering Database |