A Library for Learning Neural Operators

Guardat en:
Dades bibliogràfiques
Publicat a:arXiv.org (Dec 17, 2024), p. n/a
Autor principal: Kossaifi, Jean
Altres autors: Kovachki, Nikola, Li, Zongyi, Pitt, David, Liu-Schiaffini, Miguel, George, Robert Joseph, Bonev, Boris, Azizzadenesheli, Kamyar, Berner, Julius, Anandkumar, Anima
Publicat:
Cornell University Library, arXiv.org
Matèries:
Accés en línia:Citation/Abstract
Full text outside of ProQuest
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!
Descripció
Resum:We present NeuralOperator, an open-source Python library for operator learning. Neural operators generalize neural networks to maps between function spaces instead of finite-dimensional Euclidean spaces. They can be trained and inferenced on input and output functions given at various discretizations, satisfying a discretization convergence properties. Built on top of PyTorch, NeuralOperator provides all the tools for training and deploying neural operator models, as well as developing new ones, in a high-quality, tested, open-source package. It combines cutting-edge models and customizability with a gentle learning curve and simple user interface for newcomers.
ISSN:2331-8422
Font:Engineering Database