Faster independent vector analysis with joint pairwise updates of demixing vectors

Guardat en:
Dades bibliogràfiques
Publicat a:The Artificial Intelligence Review vol. 58, no. 2 (Feb 2025), p. 57
Publicat:
Springer Nature B.V.
Matèries:
Accés en línia:Citation/Abstract
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3147563615
003 UK-CbPIL
022 |a 0269-2821 
022 |a 1573-7462 
024 7 |a 10.1007/s10462-024-11061-1  |2 doi 
035 |a 3147563615 
045 2 |b d20250201  |b d20250228 
084 |a 68693  |2 nlm 
245 1 |a Faster independent vector analysis with joint pairwise updates of demixing vectors 
260 |b Springer Nature B.V.  |c Feb 2025 
513 |a Journal Article 
520 3 |a To achieve more efficient blind separation of multi-channel speech signals, this paper proposes a new algorithm for blind source separation(BSS) of sound sources using auxiliary function-based independent vector analysis (AuxIVA) with joint pairwise updates of demixing vectors. This algorithm is better than AuxIVA using iterative projection with adjustment (AuxIVA-IPA) when separating multiple sources. The IPA method jointly executes iterative projection (IP) and iterative source steering (ISS) to update and updates one row and one column of the separation matrix in each iteration. On this basis, IPA is extended to jointly execute IP2 and ISS2 for updating, which can update two rows and two columns of the separation matrix in each iteration. Accordingly, this proposed method is named by IPA2. Furthermore, it can optimize the same cost function as IPA while maintaining the same time complexity. Finally, the convolutional speech separation experiments are conducted to validate the effectiveness and efficiency of the proposed method. The experimental results corroborate that compared with the state-of-the-art IP, IP2, ISS, ISS2, and IPA used in AuxIVA, the IPA2 method acquires faster convergence speed and better separation performance, enabling the cost function to reach the convergence interval faster and maintaining good separation results. 
653 |a Speech 
653 |a Convergence 
653 |a Matrices (mathematics) 
653 |a Artificial intelligence 
653 |a Fourier transforms 
653 |a Cost function 
653 |a Optimization 
653 |a Sound sources 
653 |a Vector analysis 
653 |a Algorithms 
653 |a Demixing 
653 |a Efficiency 
653 |a Steering 
653 |a Experiments 
653 |a Grammatical aspect 
653 |a Function 
653 |a Effectiveness 
653 |a Source separation 
773 0 |t The Artificial Intelligence Review  |g vol. 58, no. 2 (Feb 2025), p. 57 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3147563615/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3147563615/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch