Artificial Neural Network based Modelling for Variational Effect on Double Metal Double Gate Negative Capacitance FET

Furkejuvvon:
Bibliográfalaš dieđut
Publikašuvnnas:arXiv.org (Dec 18, 2024), p. n/a
Váldodahkki: Pathak, Yash
Eará dahkkit: Laxman Prasad Goswami, Bansi Dhar Malhotra, Chaujar, Rishu
Almmustuhtton:
Cornell University Library, arXiv.org
Fáttát:
Liŋkkat:Citation/Abstract
Full text outside of ProQuest
Fáddágilkorat: Lasit fáddágilkoriid
Eai fáddágilkorat, Lasit vuosttaš fáddágilkora!

MARC

LEADER 00000nab a2200000uu 4500
001 3147568524
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3147568524 
045 0 |b d20241218 
100 1 |a Pathak, Yash 
245 1 |a Artificial Neural Network based Modelling for Variational Effect on Double Metal Double Gate Negative Capacitance FET 
260 |b Cornell University Library, arXiv.org  |c Dec 18, 2024 
513 |a Working Paper 
520 3 |a In this work, we have implemented an accurate machine-learning approach for predicting various key analog and RF parameters of Negative Capacitance Field-Effect Transistors (NCFETs). Visual TCAD simulator and the Python high-level language were employed for the entire simulation process. However, the computational cost was found to be excessively high. The machine learning approach represents a novel method for predicting the effects of different sources on NCFETs while also reducing computational costs. The algorithm of an artificial neural network can effectively predict multi-input to single-output relationships and enhance existing techniques. The analog parameters of Double Metal Double Gate Negative Capacitance FETs (D2GNCFETs) are demonstrated across various temperatures (\(T\)), oxide thicknesses (\(T_{ox}\)), substrate thicknesses (\(T_{sub}\)), and ferroelectric thicknesses (\(T_{Fe}\)). Notably, at \(T=300K\), the switching ratio is higher and the leakage current is \(84\) times lower compared to \(T=500K\). Similarly, at ferroelectric thicknesses \(T_{Fe}=4nm\), the switching ratio improves by \(5.4\) times compared to \(T_{Fe}=8nm\). Furthermore, at substrate thicknesses \(T_{sub}=3nm\), switching ratio increases by \(81\%\) from \(T_{sub}=7nm\). For oxide thicknesses at \(T_{ox}=0.8nm\), the ratio increases by \(41\%\) compared to \(T_{ox}=0.4nm\). The analysis reveals that \(T_{Fe}=4nm\), \(T=300K\), \(T_{ox}=0.8nm\), and \(T_{sub}=3nm\) represent the optimal settings for D2GNCFETs, resulting in significantly improved performance. These findings can inform various applications in nanoelectronic devices and integrated circuit (IC) design. 
653 |a Integrated circuits 
653 |a Nanotechnology devices 
653 |a Field effect transistors 
653 |a Artificial neural networks 
653 |a Ferroelectric materials 
653 |a Neural networks 
653 |a Nanoelectronics 
653 |a Capacitance 
653 |a Visual fields 
653 |a Computing costs 
653 |a Algorithms 
653 |a High level languages 
653 |a Python 
653 |a Ferroelectricity 
653 |a Semiconductor devices 
653 |a Machine learning 
653 |a Visual effects 
653 |a Leakage current 
653 |a Parameters 
653 |a Thickness 
700 1 |a Laxman Prasad Goswami 
700 1 |a Bansi Dhar Malhotra 
700 1 |a Chaujar, Rishu 
773 0 |t arXiv.org  |g (Dec 18, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3147568524/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2412.14216