Towards Heterogeneity-Aware Automatic Optimization of Time-Critical Systems via Graph Machine Learning

সংরক্ষণ করুন:
গ্রন্থ-পঞ্জীর বিবরন
প্রকাশিত:ProQuest Dissertations and Theses (2024)
প্রধান লেখক: Canizales Turcios, Ronaldo Armando
প্রকাশিত:
ProQuest Dissertations & Theses
বিষয়গুলি:
অনলাইন ব্যবহার করুন:Citation/Abstract
Full Text - PDF
ট্যাগগুলো: ট্যাগ যুক্ত করুন
কোনো ট্যাগ নেই, প্রথমজন হিসাবে ট্যাগ করুন!

MARC

LEADER 00000nab a2200000uu 4500
001 3148346991
003 UK-CbPIL
020 |a 9798346870159 
035 |a 3148346991 
045 2 |b d20240101  |b d20241231 
084 |a 66569  |2 nlm 
100 1 |a Canizales Turcios, Ronaldo Armando 
245 1 |a Towards Heterogeneity-Aware Automatic Optimization of Time-Critical Systems via Graph Machine Learning 
260 |b ProQuest Dissertations & Theses  |c 2024 
513 |a Dissertation/Thesis 
520 3 |a Modern computing's hardware architecture is increasingly heterogeneous, making optimization challenging; particularly on time-critical systems where correct results are as important as low execution time. First, we explore a study case about the manual optimization of an earthquake engineering-related application, where we parallelized accelerographic records processing. Second, we present egg-no-graph, our novel code-to-graph representation based on equality saturation, which outperforms state-of-the-art methods at estimating execution time. Third, we show how our 150M+ instances heterogeneity-aware dataset was built. Lastly, we redesign a graph-level embedding algorithm, making it converge orders of magnitude faster while maintaining similar accuracy than state-of-the-art on our downstream task, thus being feasible for use on time-critical systems. 
653 |a Computer science 
653 |a Artificial intelligence 
653 |a Information science 
773 0 |t ProQuest Dissertations and Theses  |g (2024) 
786 0 |d ProQuest  |t ProQuest Dissertations & Theses Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3148346991/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3148346991/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch