A Fusion Approach of Dependency Syntax and Sentiment Polarity for Feature Label Extraction in Commodity Reviews

Tallennettuna:
Bibliografiset tiedot
Julkaisussa:arXiv.org (Dec 20, 2024), p. n/a
Päätekijä: Xu, Jianfei
Julkaistu:
Cornell University Library, arXiv.org
Aiheet:
Linkit:Citation/Abstract
Full text outside of ProQuest
Tagit: Lisää tagi
Ei tageja, Lisää ensimmäinen tagi!
Kuvaus
Abstrakti:This study analyzes 13,218 product reviews from JD.com, covering four categories: mobile phones, computers, cosmetics, and food. A novel method for feature label extraction is proposed by integrating dependency parsing and sentiment polarity analysis. The proposed method addresses the challenges of low robustness in existing extraction algorithms and significantly enhances extraction accuracy. Experimental results show that the method achieves an accuracy of 0.7, with recall and F-score both stabilizing at 0.8, demonstrating its effectiveness. However, challenges such as dependence on matching dictionaries and the limited scope of extracted feature tags require further investigation in future research.
ISSN:2331-8422
Lähde:Engineering Database