Data-driven Modeling of Parameterized Nonlinear Fluid Dynamical Systems with a Dynamics-embedded Conditional Generative Adversarial Network

Збережено в:
Бібліографічні деталі
Опубліковано в::arXiv.org (Dec 23, 2024), p. n/a
Автор: Rostamijavanani, Abdolvahhab
Інші автори: Li, Shanwu, Yang, Yongchao
Опубліковано:
Cornell University Library, arXiv.org
Предмети:
Онлайн доступ:Citation/Abstract
Full text outside of ProQuest
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Опис
Короткий огляд:This work presents a data-driven solution to accurately predict parameterized nonlinear fluid dynamical systems using a dynamics-generator conditional GAN (Dyn-cGAN) as a surrogate model. The Dyn-cGAN includes a dynamics block within a modified conditional GAN, enabling the simultaneous identification of temporal dynamics and their dependence on system parameters. The learned Dyn-cGAN model takes into account the system parameters to predict the flow fields of the system accurately. We evaluate the effectiveness and limitations of the developed Dyn-cGAN through numerical studies of various parameterized nonlinear fluid dynamical systems, including flow over a cylinder and a 2-D cavity problem, with different Reynolds numbers. Furthermore, we examine how Reynolds number affects the accuracy of the predictions for both case studies. Additionally, we investigate the impact of the number of time steps involved in the process of dynamics block training on the accuracy of predictions, and we find that an optimal value exists based on errors and mutual information relative to the ground truth.
ISSN:2331-8422
Джерело:Engineering Database