Quantum memory at nonzero temperature in a thermodynamically trivial system

Gardado en:
Detalles Bibliográficos
Publicado en:Nature Communications vol. 16, no. 1 (2025), p. 316
Publicado:
Nature Publishing Group
Materias:
Acceso en liña:Citation/Abstract
Full Text - PDF
Etiquetas: Engadir etiqueta
Sen Etiquetas, Sexa o primeiro en etiquetar este rexistro!

MARC

LEADER 00000nab a2200000uu 4500
001 3150992616
003 UK-CbPIL
022 |a 2041-1723 
024 7 |a 10.1038/s41467-024-55570-7  |2 doi 
035 |a 3150992616 
045 2 |b d20250101  |b d20251231 
084 |a 145839  |2 nlm 
245 1 |a Quantum memory at nonzero temperature in a thermodynamically trivial system 
260 |b Nature Publishing Group  |c 2025 
513 |a Journal Article 
520 3 |a Passive error correction protects logical information forever (in the thermodynamic limit) by updating the system based only on local information and few-body interactions. A paradigmatic example is the classical two-dimensional Ising model: a Metropolis-style Gibbs sampler retains the sign of the initial magnetization (a logical bit) for thermodynamically long times in the low-temperature phase. Known models of passive quantum error correction similarly exhibit thermodynamic phase transitions to a low-temperature phase wherein logical qubits are protected by thermally stable topological order. Here, in contrast, we show that certain families of constant-rate classical and quantum low-density parity check codes have no thermodynamic phase transitions at nonzero temperature, but nonetheless exhibit ergodicity-breaking dynamical transitions: below a critical nonzero temperature, the mixing time of local Gibbs sampling diverges in the thermodynamic limit. Slow Gibbs sampling of such codes enables fault-tolerant passive quantum error correction using finite-depth circuits. This strategy is well suited to measurement-free quantum error correction, and may present a desirable experimental alternative to conventional quantum error correction based on syndrome measurements and active feedback.It has been commonly assumed that self-correcting quantum memories are only possible in systems with finite-temperature phase transitions to topological order. Here the authors show a complete breakdown of this expectation in quantum low-density parity-check codes. 
653 |a Samplers 
653 |a Body temperature 
653 |a Thermal stability 
653 |a Error correction 
653 |a Information systems 
653 |a Fault tolerance 
653 |a Low temperature 
653 |a Topology 
653 |a Phase transitions 
653 |a Ising model 
653 |a Codes 
653 |a Sampling 
653 |a Qubits (quantum computing) 
653 |a Two dimensional bodies 
653 |a Thermodynamics 
653 |a Quantum phenomena 
653 |a Error correction & detection 
653 |a Parity 
653 |a Temperature tolerance 
653 |a Error correcting codes 
653 |a Environmental 
773 0 |t Nature Communications  |g vol. 16, no. 1 (2025), p. 316 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3150992616/abstract/embedded/09EF48XIB41FVQI7?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3150992616/fulltextPDF/embedded/09EF48XIB41FVQI7?source=fedsrch