Attention-based deep learning for accurate cell image analysis

Guardado en:
Detalles Bibliográficos
Publicado en:Scientific Reports (Nature Publisher Group) vol. 15, no. 1 (2025), p. 1265
Publicado:
Nature Publishing Group
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Resumen:High-content analysis (HCA) holds enormous potential for drug discovery and research, but widely used methods can be cumbersome and yield inaccurate results. Noisy and redundant signals in cell images impede accurate deep learning-based image analysis. To address these issues, we introduce X-Profiler, a novel HCA method that combines cellular experiments, image processing, and deep learning modeling. X-Profiler combines the convolutional neural network and Transformer to encode high-content images, effectively filtering out noisy signals and precisely characterizing cell phenotypes. In comparative tests on drug-induced cardiotoxicity, mitochondrial toxicity classification, and compound classification, X-Profiler outperformed both DeepProfiler and CellProfiler, as two highly recognized and representative methods in this field. Our results demonstrate the utility and versatility of X-Profiler, and we anticipate its wide application in HCA for advancing drug development and disease research.
ISSN:2045-2322
DOI:10.1038/s41598-025-85608-9
Fuente:Science Database