Attention-based deep learning for accurate cell image analysis

Guardado en:
Detalles Bibliográficos
Publicado en:Scientific Reports (Nature Publisher Group) vol. 15, no. 1 (2025), p. 1265
Publicado:
Nature Publishing Group
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3152801918
003 UK-CbPIL
022 |a 2045-2322 
024 7 |a 10.1038/s41598-025-85608-9  |2 doi 
035 |a 3152801918 
045 2 |b d20250101  |b d20251231 
084 |a 274855  |2 nlm 
245 1 |a Attention-based deep learning for accurate cell image analysis 
260 |b Nature Publishing Group  |c 2025 
513 |a Journal Article 
520 3 |a High-content analysis (HCA) holds enormous potential for drug discovery and research, but widely used methods can be cumbersome and yield inaccurate results. Noisy and redundant signals in cell images impede accurate deep learning-based image analysis. To address these issues, we introduce X-Profiler, a novel HCA method that combines cellular experiments, image processing, and deep learning modeling. X-Profiler combines the convolutional neural network and Transformer to encode high-content images, effectively filtering out noisy signals and precisely characterizing cell phenotypes. In comparative tests on drug-induced cardiotoxicity, mitochondrial toxicity classification, and compound classification, X-Profiler outperformed both DeepProfiler and CellProfiler, as two highly recognized and representative methods in this field. Our results demonstrate the utility and versatility of X-Profiler, and we anticipate its wide application in HCA for advancing drug development and disease research. 
653 |a Image processing 
653 |a Information processing 
653 |a Cardiotoxicity 
653 |a Drug development 
653 |a Deep learning 
653 |a Neural networks 
653 |a Phenotypes 
653 |a Big Data 
653 |a Datasets 
653 |a Toxicity 
653 |a Data processing 
653 |a Research & development--R&D 
653 |a Genes 
653 |a Morphology 
653 |a Painting 
653 |a Environmental 
773 0 |t Scientific Reports (Nature Publisher Group)  |g vol. 15, no. 1 (2025), p. 1265 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3152801918/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3152801918/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch