A New Local Optimal Spline Wavelet for Image Edge Detection

Guardado en:
Detalles Bibliográficos
Publicado en:Mathematics vol. 13, no. 1 (2025), p. 42
Autor principal: Zhou, Dujuan
Otros Autores: Yuan, Zizhao, Cai, Zhanchuan, Zhu, Defu, Shen, Xiaojing
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Resumen:Wavelet-based edge detection methods have evolved significantly over the years, contributing to advances in image processing, computer vision, and pattern recognition. This paper proposes a new local optimal spline wavelet (LOSW) and the dual wavelet of the LOSW. Then, a pair of dual filters can be obtained, which can provide distortion-free signal decomposition and reconstruction, while having stronger denoising and feature capture capabilities. The coefficients of the pair of dual filters are calculated for image edge detection. We propose a new LOSW-based edge detection algorithm (LOSW-ED), which introduces a structural uncertainty–aware modulus maxima (SUAMM) to detect highly uncertain edge samples, ensuring robustness in complex and noisy environments. Additionally, LOSW-ED unifies multi-structure morphology and modulus maxima to fully exploit the complementary properties of low-frequency (LF) and high-frequency (HF) components, enabling multi-stage differential edge refinement. The experimental results show that the proposed LOSW and LOSW-ED algorithm has better performance in noise suppression and edge structure preservation.
ISSN:2227-7390
DOI:10.3390/math13010042
Fuente:Engineering Database