A New Local Optimal Spline Wavelet for Image Edge Detection

Guardado en:
Detalles Bibliográficos
Publicado en:Mathematics vol. 13, no. 1 (2025), p. 42
Autor principal: Zhou, Dujuan
Otros Autores: Yuan, Zizhao, Cai, Zhanchuan, Zhu, Defu, Shen, Xiaojing
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3153800413
003 UK-CbPIL
022 |a 2227-7390 
024 7 |a 10.3390/math13010042  |2 doi 
035 |a 3153800413 
045 2 |b d20250101  |b d20251231 
084 |a 231533  |2 nlm 
100 1 |a Zhou, Dujuan  |u School of Computer Science and Engineering, Macau University of Science and Technology, Taipa, Macau, China; <email>2202853gii30002@student.must.edu.mo</email>; School of Mathematics, Physics and Civil Engineering, Beijing Institute of Technology, Zhuhai 519088, China; <email>210110101171@bitzh.edu.cn</email> 
245 1 |a A New Local Optimal Spline Wavelet for Image Edge Detection 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Wavelet-based edge detection methods have evolved significantly over the years, contributing to advances in image processing, computer vision, and pattern recognition. This paper proposes a new local optimal spline wavelet (LOSW) and the dual wavelet of the LOSW. Then, a pair of dual filters can be obtained, which can provide distortion-free signal decomposition and reconstruction, while having stronger denoising and feature capture capabilities. The coefficients of the pair of dual filters are calculated for image edge detection. We propose a new LOSW-based edge detection algorithm (LOSW-ED), which introduces a structural uncertainty–aware modulus maxima (SUAMM) to detect highly uncertain edge samples, ensuring robustness in complex and noisy environments. Additionally, LOSW-ED unifies multi-structure morphology and modulus maxima to fully exploit the complementary properties of low-frequency (LF) and high-frequency (HF) components, enabling multi-stage differential edge refinement. The experimental results show that the proposed LOSW and LOSW-ED algorithm has better performance in noise suppression and edge structure preservation. 
653 |a Computational mathematics 
653 |a Monte Carlo simulation 
653 |a Accuracy 
653 |a Wavelet transforms 
653 |a Image reconstruction 
653 |a Fourier transforms 
653 |a Image filters 
653 |a Noise reduction 
653 |a Neural networks 
653 |a Signal processing 
653 |a Fractals 
653 |a Algorithms 
653 |a Computer vision 
653 |a Methods 
653 |a Localization 
653 |a Image processing 
653 |a Pattern recognition 
653 |a Morphology 
653 |a Edge detection 
700 1 |a Yuan, Zizhao  |u School of Mathematics, Physics and Civil Engineering, Beijing Institute of Technology, Zhuhai 519088, China; <email>210110101171@bitzh.edu.cn</email> 
700 1 |a Cai, Zhanchuan  |u School of Computer Science and Engineering, Macau University of Science and Technology, Taipa, Macau, China; <email>2202853gii30002@student.must.edu.mo</email> 
700 1 |a Zhu, Defu  |u Key Laboratory of In-Situ Property-Improving Mining of Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China; <email>zhudefu@tyut.edu.cn</email>; Galuminium Group Co., Ltd., Guangzhou 510450, China 
700 1 |a Shen, Xiaojing  |u Faculty of Data Science, City University of Macau, Macau, China; <email>d23092100546@cityu.edu.mo</email> 
773 0 |t Mathematics  |g vol. 13, no. 1 (2025), p. 42 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3153800413/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3153800413/fulltextwithgraphics/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3153800413/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch