Word Embeddings and Machine Learning Classifiers Applications for Automatic Detection of Suicide Tendencies in Social Media
محفوظ في:
| الحاوية / القاعدة: | Programming and Computer Software vol. 50, no. 8 (Dec 2024), p. 612 |
|---|---|
| منشور في: |
Springer Nature B.V.
|
| الموضوعات: | |
| الوصول للمادة أونلاين: | Citation/Abstract Full Text Full Text - PDF |
| الوسوم: |
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
| مستخلص: | This study presents an innovative and comprehensive model for the automatic detection of suicidal ideation in social media posts. Through an in-depth analysis of 50000 posts and the combination of four word embedding techniques (Word2Vec, GloVe, MPNet, and GPT-3) with five advanced classifiers, we have achieved an accuracy of over 90% in identifying users who may be at risk. Our results suggest that the integration of large language models like GPT-3 with deep neural network architectures offers a promising tool for suicide prevention in the digital realm, contributing to the development of automated screening systems capable of alerting mental health professionals to potential cases of risk. |
|---|---|
| تدمد: | 0361-7688 1608-3261 |
| DOI: | 10.1134/S0361768824700658 |
| المصدر: | Advanced Technologies & Aerospace Database |