Raman Spectroscopy and Its Application in Fruit Quality Detection

Gorde:
Xehetasun bibliografikoak
Argitaratua izan da:Agriculture vol. 15, no. 2 (2025), p. 195
Egile nagusia: Huang, Yong
Beste egile batzuk: Wang, Haoran, Huang, Huasheng, Tan, Zhiping, Hou, Chaojun, Zhuang, Jiajun, Tang, Yu
Argitaratua:
MDPI AG
Gaiak:
Sarrera elektronikoa:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiketak: Etiketa erantsi
Etiketarik gabe, Izan zaitez lehena erregistro honi etiketa jartzen!

MARC

LEADER 00000nab a2200000uu 4500
001 3159158330
003 UK-CbPIL
022 |a 2077-0472 
024 7 |a 10.3390/agriculture15020195  |2 doi 
035 |a 3159158330 
045 2 |b d20250101  |b d20251231 
084 |a 231331  |2 nlm 
100 1 |a Huang, Yong  |u Academy of Interdisciplinary Studies, Guangdong Polytechnic Normal University, Guangzhou 510665, China; <email>gsdhuangy@gpnu.edu.cn</email> (Y.H.); <email>15537470396@163.com</email> (H.W.); <email>huanghsheng@gpnu.edu.cn</email> (H.H.); <email>tanzp@gpnu.edu.cn</email> (Z.T.) 
245 1 |a Raman Spectroscopy and Its Application in Fruit Quality Detection 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Raman spectroscopy is a spectral analysis technique based on molecular vibration. It has gained widespread acceptance as a practical tool for the non-invasive and rapid characterization or identification of multiple analytes and compounds in recent years. In fruit quality detection, Raman spectroscopy is employed to detect organic compounds, such as pigments, phenols, and sugars, as well as to analyze the molecular structures of specific chemical bonds or functional groups, providing valuable insights into fruit disease detection, pesticide residue analysis, and origin identification. Consequently, Raman spectroscopy techniques have demonstrated significant potential in agri-food analysis across various domains. Notably, the frontier of Raman spectroscopy is experiencing a surge in machine learning applications to enhance the resolution and quality of the resulting spectra. This paper reviews the fundamental principles and recent advancements in Raman spectroscopy and explores data processing techniques that use machine learning in Raman spectroscopy, with a focus on its applications in detecting fruit diseases, analyzing pesticide residues, and identifying origins. Finally, it highlights the challenges and future prospects of Raman spectroscopy, offering an effective reference for fruit quality detection. 
653 |a Pesticides 
653 |a Phenols 
653 |a Pollutants 
653 |a Gold 
653 |a Data processing 
653 |a Food analysis 
653 |a Organic compounds 
653 |a Nanoparticles 
653 |a Fruits 
653 |a Molecular structure 
653 |a Spectrum analysis 
653 |a Food quality 
653 |a Machine learning 
653 |a Pesticide residues 
653 |a Raman spectroscopy 
653 |a Functional groups 
653 |a Agribusiness 
653 |a Disease detection 
653 |a Chemical bonds 
653 |a Radiation 
653 |a Spectroscopy 
653 |a Vibration 
653 |a Learning algorithms 
653 |a Spectral analysis 
653 |a Lasers 
653 |a Pigments 
653 |a Residues 
653 |a Quantitative analysis 
653 |a Vibration analysis 
653 |a Agricultural production 
653 |a Food contamination 
653 |a Light 
653 |a Spectroscopic analysis 
653 |a Environmental 
700 1 |a Wang, Haoran  |u Academy of Interdisciplinary Studies, Guangdong Polytechnic Normal University, Guangzhou 510665, China; <email>gsdhuangy@gpnu.edu.cn</email> (Y.H.); <email>15537470396@163.com</email> (H.W.); <email>huanghsheng@gpnu.edu.cn</email> (H.H.); <email>tanzp@gpnu.edu.cn</email> (Z.T.) 
700 1 |a Huang, Huasheng  |u Academy of Interdisciplinary Studies, Guangdong Polytechnic Normal University, Guangzhou 510665, China; <email>gsdhuangy@gpnu.edu.cn</email> (Y.H.); <email>15537470396@163.com</email> (H.W.); <email>huanghsheng@gpnu.edu.cn</email> (H.H.); <email>tanzp@gpnu.edu.cn</email> (Z.T.) 
700 1 |a Tan, Zhiping  |u Academy of Interdisciplinary Studies, Guangdong Polytechnic Normal University, Guangzhou 510665, China; <email>gsdhuangy@gpnu.edu.cn</email> (Y.H.); <email>15537470396@163.com</email> (H.W.); <email>huanghsheng@gpnu.edu.cn</email> (H.H.); <email>tanzp@gpnu.edu.cn</email> (Z.T.) 
700 1 |a Hou, Chaojun  |u College of Mathematics and Data Science, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; <email>houchaojun@zhku.edu.cn</email> (C.H.); <email>zhuangjiajun@zhku.edu.cn</email> (J.Z.) 
700 1 |a Zhuang, Jiajun  |u College of Mathematics and Data Science, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; <email>houchaojun@zhku.edu.cn</email> (C.H.); <email>zhuangjiajun@zhku.edu.cn</email> (J.Z.) 
700 1 |a Tang, Yu  |u Academy of Interdisciplinary Studies, Guangdong Polytechnic Normal University, Guangzhou 510665, China; <email>gsdhuangy@gpnu.edu.cn</email> (Y.H.); <email>15537470396@163.com</email> (H.W.); <email>huanghsheng@gpnu.edu.cn</email> (H.H.); <email>tanzp@gpnu.edu.cn</email> (Z.T.) 
773 0 |t Agriculture  |g vol. 15, no. 2 (2025), p. 195 
786 0 |d ProQuest  |t Agriculture Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3159158330/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3159158330/fulltextwithgraphics/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3159158330/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch