Maximum Mixture Correntropy Criterion-Based Variational Bayesian Adaptive Kalman Filter for INS/UWB/GNSS-RTK Integrated Positioning

Na minha lista:
Detalhes bibliográficos
Publicado no:Remote Sensing vol. 17, no. 2 (2025), p. 207
Autor principal: Wang, Sen
Outros Autores: Dai, Peipei, Xu, Tianhe, Nie, Wenfeng, Cong, Yangzi, Xing, Jianping, Gao, Fan
Publicado em:
MDPI AG
Assuntos:
Acesso em linha:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!

MARC

LEADER 00000nab a2200000uu 4500
001 3159535639
003 UK-CbPIL
022 |a 2072-4292 
024 7 |a 10.3390/rs17020207  |2 doi 
035 |a 3159535639 
045 2 |b d20250101  |b d20251231 
084 |a 231556  |2 nlm 
100 1 |a Wang, Sen  |u School of Integrated Circuits, Shandong University, Jinan 250101, China; <email>202120349@mail.sdu.edu.cn</email> (S.W.); <email>xingjp@sdu.edu.cn</email> (J.X.) 
245 1 |a Maximum Mixture Correntropy Criterion-Based Variational Bayesian Adaptive Kalman Filter for INS/UWB/GNSS-RTK Integrated Positioning 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a The safe operation of unmanned ground vehicles (UGVs) demands fundamental and essential requirements for continuous and reliable positioning performance. Traditional coupled navigation systems, combining the global navigation satellite system (GNSS) with an inertial navigation system (INS), provide continuous, drift-free position estimation. However, challenges like GNSS signal interference and blockage in complex scenarios can significantly degrade system performance. Moreover, ultra-wideband (UWB) technology, known for its high precision, is increasingly used as a complementary system to the GNSS. To tackle these challenges, this paper proposes a novel tightly coupled INS/UWB/GNSS-RTK integrated positioning system framework, leveraging a variational Bayesian adaptive Kalman filter based on the maximum mixture correntropy criterion. This framework is introduced to provide a high-precision and robust navigation solution. By incorporating the maximum mixture correntropy criterion, the system effectively mitigates interference from anomalous measurements. Simultaneously, variational Bayesian estimation is employed to adaptively adjust noise statistical characteristics, thereby enhancing the robustness and accuracy of the integrated system’s state estimation. Furthermore, sensor measurements are tightly integrated with the inertial measurement unit (IMU), facilitating precise positioning even in the presence of interference from multiple signal sources. A series of real-world and simulation experiments were carried out on a UGV to assess the proposed approach’s performance. Experimental results demonstrate that the approach provides superior accuracy and stability in integrated system state estimation, significantly mitigating position drift error caused by uncertainty-induced disturbances. In the presence of non-Gaussian noise disturbances introduced by anomalous measurements, the proposed approach effectively implements error control, demonstrating substantial advantages in positioning accuracy and robustness. 
653 |a Wireless communications 
653 |a Navigation systems 
653 |a Accuracy 
653 |a State estimation 
653 |a Drift estimation 
653 |a Error analysis 
653 |a Inertial coordinates 
653 |a Kalman filters 
653 |a Inertial navigation 
653 |a Position measurement 
653 |a Ultrawideband 
653 |a Robust control 
653 |a Adaptive systems 
653 |a Bayesian analysis 
653 |a Disturbances 
653 |a Noise control 
653 |a Sensors 
653 |a Criteria 
653 |a Random noise 
653 |a Unmanned ground vehicles 
653 |a Algorithms 
653 |a Mixtures 
653 |a Drift 
653 |a Inertial platforms 
653 |a Inertial sensing devices 
653 |a Global navigation satellite system 
653 |a Parameter estimation 
700 1 |a Dai, Peipei  |u School of Electrical and Electronic Engineering, Shandong University of Technology, Zibo 255000, China; <email>daipeipei@sdut.edu.cn</email> 
700 1 |a Xu, Tianhe  |u Institute of Space Sciences, Shandong University, Weihai 264209, China; <email>wenfengnie@sdu.edu.cn</email> (W.N.); <email>yzcong@sdu.edu.cn</email> (Y.C.); <email>gaofan@sdu.edu.cn</email> (F.G.) 
700 1 |a Nie, Wenfeng  |u Institute of Space Sciences, Shandong University, Weihai 264209, China; <email>wenfengnie@sdu.edu.cn</email> (W.N.); <email>yzcong@sdu.edu.cn</email> (Y.C.); <email>gaofan@sdu.edu.cn</email> (F.G.) 
700 1 |a Cong, Yangzi  |u Institute of Space Sciences, Shandong University, Weihai 264209, China; <email>wenfengnie@sdu.edu.cn</email> (W.N.); <email>yzcong@sdu.edu.cn</email> (Y.C.); <email>gaofan@sdu.edu.cn</email> (F.G.) 
700 1 |a Xing, Jianping  |u School of Integrated Circuits, Shandong University, Jinan 250101, China; <email>202120349@mail.sdu.edu.cn</email> (S.W.); <email>xingjp@sdu.edu.cn</email> (J.X.) 
700 1 |a Gao, Fan  |u Institute of Space Sciences, Shandong University, Weihai 264209, China; <email>wenfengnie@sdu.edu.cn</email> (W.N.); <email>yzcong@sdu.edu.cn</email> (Y.C.); <email>gaofan@sdu.edu.cn</email> (F.G.) 
773 0 |t Remote Sensing  |g vol. 17, no. 2 (2025), p. 207 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3159535639/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3159535639/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3159535639/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch