Acoustic lattice resonances and generalised Rayleigh–Bloch waves

Na minha lista:
Detalhes bibliográficos
Publicado no:Communications Physics vol. 8, no. 1 (2025), p. 37
Publicado em:
Nature Publishing Group
Assuntos:
Acesso em linha:Citation/Abstract
Full Text - PDF
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!

MARC

LEADER 00000nab a2200000uu 4500
001 3159571419
003 UK-CbPIL
022 |a 2399-3650 
024 7 |a 10.1038/s42005-025-01950-4  |2 doi 
035 |a 3159571419 
045 2 |b d20250101  |b d20251231 
245 1 |a Acoustic lattice resonances and generalised Rayleigh–Bloch waves 
260 |b Nature Publishing Group  |c 2025 
513 |a Journal Article 
520 3 |a The intrigue of waves on periodic lattices and gratings has resonated with physicists and mathematicians alike for decades. In-depth analysis has been devoted to the seemingly simplest array system: a one-dimensionally periodic lattice of two-dimensional scatterers embedded in a dispersionless medium governed by the Helmholtz equation. We investigate such a system and experimentally confirm the existence of a new class of generalised Rayleigh–Bloch waves that have been recently theorised to exist in classical wave regimes, without the need for resonant scatterers. Airborne acoustics serves as such a regime and we experimentally observe the first generalised Rayleigh–Bloch waves above the first cut-off, i.e., in the radiative regime. We consider radiative acoustic lattice resonances along a diffraction grating and connect them to generalised Rayleigh–Bloch waves by considering both short and long arrays of non-resonant 2D cylindrical Neumann scatterers embedded in air. On short arrays, we observe finite lattice resonances under continuous wave excitation, and on long arrays, we observe propagating Rayleigh–Bloch waves under pulsed excitation. We interpret their existence by considering multiple wave scattering theory and, in doing so, unify differing nomenclatures used to describe waves on infinite periodic and finite arrays and the interpretation of their dispersive properties.The interaction of waves with periodic structures is a feature central to many areas of physics from quantum mechanics to acoustics. Here, the authors numerically and experimentally demonstrate the presence of Rayleigh-Bloch waves in the regime above the first cut-off using acoustic gratings. 
653 |a Acoustic propagation 
653 |a Cylindrical waves 
653 |a Wave diffraction 
653 |a Gratings (spectra) 
653 |a Wave scattering 
653 |a Helmholtz equations 
653 |a Quantum mechanics 
653 |a Acoustic resonance 
653 |a Two dimensional analysis 
653 |a Resonance scattering 
653 |a Wave dispersion 
653 |a Acoustics 
653 |a Arrays 
653 |a Wave propagation 
653 |a Periodic structures 
653 |a Wave excitation 
653 |a Bloch waves 
653 |a Continuous radiation 
773 0 |t Communications Physics  |g vol. 8, no. 1 (2025), p. 37 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3159571419/abstract/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3159571419/fulltextPDF/embedded/J7RWLIQ9I3C9JK51?source=fedsrch