Efficient Recovery of Linear Predicted Coefficients Based on Adaptive Steepest Descent Algorithm in Signal Compression for End-to-End Communications

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of Electrical and Computer Engineering vol. 2025 (2025)
Hlavní autor: Abel Kamagara
Další autoři: Kagudde, Abbas, Atakan, Baris
Vydáno:
John Wiley & Sons, Inc.
Témata:
On-line přístup:Citation/Abstract
Full Text
Full Text - PDF
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Abstrakt:The efficiency of recovery and signal decoding efficacy at the receiver in end-to-end communications using linearly predicted coefficients are susceptible to errors, especially for highly compressed signals. In this paper, we propose a method to efficiently recover linearly predicted coefficients for high signal compression for end-to-end communications. Herein, the steepest descent algorithm is applied at the receiver to decode the affected linear predicted coefficients. This algorithm is used to estimate the unknown frequency, time, and phase. Subsequently, the algorithm facilitates down-conversion, time and carrier recovery, equalization, and correlation processes. To evaluate the feasibility of the proposed method, parameters such as multipath interference, additive white Gaussian noise, timing, and phase noise are modeled as channel errors in signal compression using the software-defined receiver. Our results show substantial recovery efficiency with noise variance between 0 and <inline-formula>y</inline-formula> × 10E − 3, where <inline-formula>y</inline-formula> lies between 0 and 10 using the modeled performance metrics of bit error rate, symbol error rate, and mean square error. This is promising for modeling software-defined networks using highly compressed signals in end-to-end communications.
ISSN:2090-0147
2090-0155
DOI:10.1155/jece/6570183
Zdroj:Advanced Technologies & Aerospace Database