DyAb: sequence-based antibody design and property prediction in a low-data regime

Salvato in:
Dettagli Bibliografici
Pubblicato in:bioRxiv (Feb 2, 2025)
Autore principale: Joshua Yao-Yu Lin
Altri autori: Hofmann, Jennifer L, Leaver-Fay, Andrew, Wei-Ching, Liang, Vasilaki, Stefania, Lee, Edith, Pinheiro, Pedro O, Tagasovska, Natasa, Kiefer, James R, Wu, Yan, Seeger, Franziska, Bonneau, Richard, Gligorijevic, Vladimir, Watkins, Andrew, Cho, Kyunghyun, Frey, Nathan C
Pubblicazione:
Cold Spring Harbor Laboratory Press
Soggetti:
Accesso online:Citation/Abstract
Full Text - PDF
Full text outside of ProQuest
Tags: Aggiungi Tag
Nessun Tag, puoi essere il primo ad aggiungerne!!
Descrizione
Abstract:Protein therapeutic design and property prediction are frequently hampered by data scarcity. Here we propose a new model, DyAb, that addresses these issues by leveraging a pair-wise representation to predict differences in protein properties, rather than absolute values. DyAb is built on top of a pre-trained protein language model and achieves a Spearman rank correlation of up to 0.85 on binding affinity prediction across molecules targeting three different antigens (EGFR, IL-6, and an internal target), given as few as 100 training data. We employ DyAb in two design contexts: as a ranking model to score combinations of known mutations, and combined with a genetic algorithm to generate new sequences. Our method consistently generates novel antibody candidates with high binding rates, including designs that improve on the binding affinity of the lead molecule by more than ten-fold. DyAb represents a powerful tool for engineering therapeutic protein properties in low data regimes common in early-stage drug development.Competing Interest StatementThe authors have declared no competing interest.
ISSN:2692-8205
DOI:10.1101/2025.01.28.635353
Fonte:Biological Science Database