Distributed Intelligent Optimization of E-commerce User Purchase Data Mining using Spark Framework

Guardado en:
Detalles Bibliográficos
Publicado en:Informatica vol. 48, no. 20 (Dec 2024), p. 29
Autor principal: Wu, Jianjun
Publicado:
Slovenian Society Informatika / Slovensko drustvo Informatika
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3163253557
003 UK-CbPIL
022 |a 0350-5596 
022 |a 1854-3871 
024 7 |a 10.31449/inf.v48120.6779  |2 doi 
035 |a 3163253557 
045 2 |b d20241201  |b d20241231 
084 |a 179436  |2 nlm 
100 1 |a Wu, Jianjun  |u College of Digital Economics and Trade, Kaifeng University Kaifeng 475004, China 
245 1 |a Distributed Intelligent Optimization of E-commerce User Purchase Data Mining using Spark Framework 
260 |b Slovenian Society Informatika / Slovensko drustvo Informatika  |c Dec 2024 
513 |a Journal Article 
520 3 |a As the development of e-commerce becomes more and more intelligent, higher requirements have been put forward for the algorithms controlling e-commerce operations. However, the current e-commerce operation is not timely and accurate enough to update the purchase data and statistics, resulting in cost consumption and revenue is not proportional, and can not accurately meet the user favorite. To speed up the collection of user purchase behavior data and improve the revenue of e-commerce operations, the study introduces adaptive degree values based on a distributed computing framework combined with a topological structure. The computing framework is used to speed up the calculation and convergence of user data, and the topology is responsible for classifving the data in the dataset and calculating the optimal location. The improved algorithm under the control of the topology structure, the accuracy of the product is above 94%, the highest is above 98%, compared with other algorithms, the accuracy is higher. The data collected on JD shopping platform shows that compared with other algorithms, the improved algorithm is improved by 81.2% due to the stability of the fitness value. In the simulation experiment, the overlap between the noise value of beauty search 2000-2700 and the noise value of clothing matching 2000-2500 in the shopping platform was large. Therefore, there was a correlation between the user's search for clothing collocation and the beauty search. In summary the improved algorithm is highly effective in both stability, accuracy, and applied error control. Therefore, the study of the improved algorithm has a better application for data mining of user purchase behavior. 
653 |a Accuracy 
653 |a Simulation 
653 |a Search engines 
653 |a Data mining 
653 |a Clothing 
653 |a Energy management 
653 |a Searching 
653 |a Optimization 
653 |a Topology 
653 |a Revenue 
653 |a Design 
653 |a Algorithms 
653 |a Data collection 
653 |a Quality of service 
653 |a Error analysis 
653 |a Shopping 
653 |a Stability 
653 |a Electronic commerce 
653 |a Privacy 
653 |a Optimization algorithms 
653 |a Distributed processing 
773 0 |t Informatica  |g vol. 48, no. 20 (Dec 2024), p. 29 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3163253557/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3163253557/fulltext/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3163253557/fulltextPDF/embedded/ZKJTFFSVAI7CB62C?source=fedsrch