Accurate Joint Estimation of Position and Orientation Based on Angle of Arrival and Two-Way Ranging of Ultra-Wideband Technology

Guardado en:
Detalles Bibliográficos
Publicado en:Electronics vol. 14, no. 3 (2025), p. 429
Autor principal: Zhang, Di
Otros Autores: Xu, Hongbiao, Li, Zhan, Li, Ye, Yin, Guangqiang, Wang, Xinzhong
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Resumen:In wireless sensor networks (WSNs), ultra-wideband (UWB) technology is essential for robot localization systems, especially for methods of the simultaneous estimation of position and orientation. However, current approaches frequently depend on rigid body models, which require multiple base stations and lead to substantial equipment costs. This paper presents a cost-effective UWB SL model utilizing the angle of arrival (AOA) and double-sided two-way ranging (DS-TWR). To improve localization accuracy, we propose a self-localization algorithm based on constrained weighted least squares (SL-CWLS), integrating a weighted matrix derived from a measured noise model. Additionally, we derive the constrained Cramér–Rao lower bound (CCRLB) to analyze the performance of the proposed algorithm. Simulation results indicate that the proposed method achieves high estimation accuracy, while real-world experiments validate the simulation results.
ISSN:2079-9292
DOI:10.3390/electronics14030429
Fuente:Advanced Technologies & Aerospace Database