Enhancing Zero-Shot Learning Through Kernelized Visual Prototypes and Similarity Learning
محفوظ في:
| الحاوية / القاعدة: | Mathematics vol. 13, no. 3 (2025), p. 412 |
|---|---|
| المؤلف الرئيسي: | |
| مؤلفون آخرون: | |
| منشور في: |
MDPI AG
|
| الموضوعات: | |
| الوصول للمادة أونلاين: | Citation/Abstract Full Text + Graphics Full Text - PDF |
| الوسوم: |
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
| مستخلص: | Zero-shot learning (ZSL) holds significant promise for scaling image classification to previously unseen classes by leveraging previously acquired knowledge. However, conventional ZSL methods face challenges such as domain-shift and hubness problems. To address these issues, we propose a novel kernelized similarity learning approach that reduces intraclass similarity while increasing interclass similarity. Specifically, we utilize kernelized ridge regression to learn visual prototypes for unseen classes in the semantic vectors. Furthermore, we introduce kernel polarization and autoencoder structures into the similarity function to enhance discriminative ability and mitigate the hubness and domain-shift problems. Extensive experiments on five benchmark datasets demonstrate that our method outperforms state-of-the-art ZSL and generalized zero-shot learning (GZSL) methods, highlighting its effectiveness in improving classification performance for unseen classes. |
|---|---|
| تدمد: | 2227-7390 |
| DOI: | 10.3390/math13030412 |
| المصدر: | Engineering Database |