Decoding Structural Equation Modeling: Insights on Data Assumptions, Normality, and Model Fit in Advancing Digital Marketing Strategies

Gardado en:
Detalles Bibliográficos
Publicado en:Journal of Cases on Information Technology vol. 27, no. 1 (2025), p. 1-21
Autor Principal: Wah, Jack Ng Kok
Publicado:
IGI Global
Materias:
Acceso en liña:Citation/Abstract
Full Text - PDF
Etiquetas: Engadir etiqueta
Sen Etiquetas, Sexa o primeiro en etiquetar este rexistro!

MARC

LEADER 00000nab a2200000uu 4500
001 3166784261
003 UK-CbPIL
022 |a 1548-7717 
022 |a 1548-7725 
022 |a 1098-8580 
022 |a 1537-937X 
024 7 |a 10.4018/JCIT.369092  |2 doi 
035 |a 3166784261 
045 2 |b d20250101  |b d20250331 
084 |a 54251  |2 nlm 
100 1 |a Wah, Jack Ng Kok  |u Multimedia University, Cyberjaya, Malaysia 
245 1 |a Decoding Structural Equation Modeling: Insights on Data Assumptions, Normality, and Model Fit in Advancing Digital Marketing Strategies 
260 |b IGI Global  |c 2025 
513 |a Journal Article 
520 3 |a The study utilizes structural equation modeling to examine issues related to normality, missing data, and sampling errors in digital marketing engagement research. The primary focus is on exploring relationships between self-esteem, social comparison, social interactions, perceived social support, and psychological well-being, with perceived social support as a mediating factor. Confirmatory factor analysis is applied to evaluate model fit using data from 400 social media users. Skewness and Kurtosis values are assessed to ensure normality, with scores kept within the acceptable range of -2 to +2. Questionnaires with over 30% missing values are excluded to maintain data quality, and the “10-times rule” is used to ensure adequate sample size and reduce sampling errors. Results confirm a normal distribution and indicate that the model aligns with SEM assumptions, meeting all fit indices. The research offers insights into SEM's application in digital marketing and suggests future studies should investigate advanced modeling techniques for further exploration. 
653 |a Kurtosis 
653 |a Errors 
653 |a Confirmatory factor analysis 
653 |a Social comparison 
653 |a Self esteem 
653 |a Skewness 
653 |a Psychological factors 
653 |a Data quality 
653 |a Missing data 
653 |a Marketing 
653 |a Well being 
653 |a Social support 
653 |a Social media 
653 |a Digital marketing 
653 |a Error reduction 
653 |a Social interaction 
653 |a Structural equation modeling 
653 |a Modelling 
653 |a Normal distribution 
653 |a Factor analysis 
653 |a Sampling error 
653 |a Sampling 
653 |a Perceived social support 
653 |a Decoding 
653 |a Psychological well being 
653 |a Normality 
773 0 |t Journal of Cases on Information Technology  |g vol. 27, no. 1 (2025), p. 1-21 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3166784261/abstract/embedded/09EF48XIB41FVQI7?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3166784261/fulltextPDF/embedded/09EF48XIB41FVQI7?source=fedsrch