TGF-Net: Transformer and gist CNN fusion network for multi-modal remote sensing image classification

Αποθηκεύτηκε σε:
Λεπτομέρειες βιβλιογραφικής εγγραφής
Εκδόθηκε σε:PLoS One vol. 20, no. 2 (Feb 2025), p. e0316900
Κύριος συγγραφέας: Wang, Huiqing
Άλλοι συγγραφείς: Wang, Huajun, Wu, Linfen
Έκδοση:
Public Library of Science
Θέματα:
Διαθέσιμο Online:Citation/Abstract
Full Text
Full Text - PDF
Ετικέτες: Προσθήκη ετικέτας
Δεν υπάρχουν, Καταχωρήστε ετικέτα πρώτοι!
Περιγραφή
Περίληψη:In the field of earth sciences and remote exploration, the classification and identification of surface materials on earth have been a significant research area that poses considerable challenges in recent times. Although deep learning technology has achieved certain results in remote sensing image classification, it still has certain challenges for multi-modality remote sensing data classification. In this paper, we propose a fusion network based on transformer and gist convolutional neural network (CNN), namely TGF-Net. To minimize the duplication of information in multimodal data, the TGF-Net network incorporates a feature reconstruction module (FRM) that employs matrix factorization and self-attention mechanism for decomposing and evaluating the similarity of multimodal features. This enables the extraction of distinct as well as common features. Meanwhile, the transformer-based spectral feature extraction module (TSFEM) was designed by combining the different characteristics of remote sensing images and considering the problem of orderliness of the sequence between hyperspectral image (HSI) channels. In order to address the issue of representing the relative positions of spatial targets in synthetic aperture radar (SAR) images, we proposed a spatial feature extraction module called gist-based spatial feature extraction module (GSFEM). To assess the efficacy and superiority of the proposed TGF-Net, we performed experiments on two datasets comprising HSI and SAR data.
ISSN:1932-6203
DOI:10.1371/journal.pone.0316900
Πηγή:Health & Medical Collection