Solving Flexible Job-Shop Scheduling Problems Based on Quantum Computing

Salvato in:
Dettagli Bibliografici
Pubblicato in:Entropy vol. 27, no. 2 (2025), p. 189
Autore principale: Fu, Kaihan
Altri autori: Liu, Jianjun, Chen, Miao, Zhang, Huiying
Pubblicazione:
MDPI AG
Soggetti:
Accesso online:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Aggiungi Tag
Nessun Tag, puoi essere il primo ad aggiungerne!!
Descrizione
Abstract:Flexible job-shop scheduling problems (FJSPs) represent one of the most complex combinatorial optimization challenges. Modern production systems and control processes demand rapid decision-making in scheduling. To address this challenge, we propose a quantum computing approach for solving FJSPs. We propose a quadratic unconstrained binary optimization (QUBO) model to minimize the makespan of FJSPs, with the scheduling scheme encoded in the ground state of the Hamiltonian operator. The model is solved using a coherent Ising machine (CIM). Numerical experiments are conducted to evaluate and validate the performance and effectiveness of the CIM. The results demonstrate that quantum computing holds significant potential for solving FJSPs more efficiently than traditional computational methods.
ISSN:1099-4300
DOI:10.3390/e27020189
Fonte:Engineering Database