Solving Flexible Job-Shop Scheduling Problems Based on Quantum Computing

Furkejuvvon:
Bibliográfalaš dieđut
Publikašuvnnas:Entropy vol. 27, no. 2 (2025), p. 189
Váldodahkki: Fu, Kaihan
Eará dahkkit: Liu, Jianjun, Chen, Miao, Zhang, Huiying
Almmustuhtton:
MDPI AG
Fáttát:
Liŋkkat:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Fáddágilkorat: Lasit fáddágilkoriid
Eai fáddágilkorat, Lasit vuosttaš fáddágilkora!
Govvádus
Abstrákta:Flexible job-shop scheduling problems (FJSPs) represent one of the most complex combinatorial optimization challenges. Modern production systems and control processes demand rapid decision-making in scheduling. To address this challenge, we propose a quantum computing approach for solving FJSPs. We propose a quadratic unconstrained binary optimization (QUBO) model to minimize the makespan of FJSPs, with the scheduling scheme encoded in the ground state of the Hamiltonian operator. The model is solved using a coherent Ising machine (CIM). Numerical experiments are conducted to evaluate and validate the performance and effectiveness of the CIM. The results demonstrate that quantum computing holds significant potential for solving FJSPs more efficiently than traditional computational methods.
ISSN:1099-4300
DOI:10.3390/e27020189
Gáldu:Engineering Database