Collocation Method for the Time-Fractional Generalized Kawahara Equation Using a Certain Lucas Polynomial Sequence

Gorde:
Xehetasun bibliografikoak
Argitaratua izan da:Axioms vol. 14, no. 2 (2025), p. 114
Egile nagusia: Waleed Mohamed Abd-Elhameed
Beste egile batzuk: Abdulrahman Khalid Al-Harbi, Omar Mazen Alqubori, Alharbi, Mohammed H, Ahmed Gamal Atta
Argitaratua:
MDPI AG
Gaiak:
Sarrera elektronikoa:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiketak: Etiketa erantsi
Etiketarik gabe, Izan zaitez lehena erregistro honi etiketa jartzen!
Deskribapena
Laburpena:This paper proposes a numerical technique to solve the time-fractional generalized Kawahara differential equation (TFGKDE). Certain shifted Lucas polynomials are utilized as basis functions. We first establish some new formulas concerned with the introduced polynomials and then tackle the equation using a suitable collocation procedure. The integer and fractional derivatives of the shifted polynomials are used with the typical collocation method to convert the equation with its governing conditions into a system of algebraic equations. The convergence and error analysis of the proposed double expansion are rigorously investigated, demonstrating its accuracy and efficiency. Illustrative examples are provided to validate the effectiveness and applicability of the proposed algorithm.
ISSN:2075-1680
DOI:10.3390/axioms14020114
Baliabidea:Engineering Database