Abstract Operations Research Modeling Using Natural Language Inputs
Збережено в:
| Опубліковано в:: | Information vol. 16, no. 2 (2025), p. 128 |
|---|---|
| Автор: | |
| Інші автори: | , , , |
| Опубліковано: |
MDPI AG
|
| Предмети: | |
| Онлайн доступ: | Citation/Abstract Full Text + Graphics Full Text - PDF |
| Теги: |
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Короткий огляд: | Operations research (OR) uses mathematical models to enhance decision making, but developing these models requires expert knowledge and can be time-consuming. Automated mathematical programming (AMP) has emerged to simplify this process, but existing systems have limitations. This paper introduces a novel methodology that uses recent advances in a large language model (LLM) to create and edit abstract OR models from non-expert user queries expressed using natural language. This reduces the need for domain expertise and the time to formulate a problem, and an abstract OR model generated can be deployed to a multi-tenant platform to support a class of users with different input data. This paper presents an end-to-end pipeline, named NL2OR, that generates solutions to OR problems from natural language input, and shares experimental results on several important OR problems. |
|---|---|
| ISSN: | 2078-2489 |
| DOI: | 10.3390/info16020128 |
| Джерело: | Advanced Technologies & Aerospace Database |