Simultaneous Source Number Detection and DOA Estimation Using Deep Neural Network and K2-Means Clustering with Prior Knowledge

Guardat en:
Dades bibliogràfiques
Publicat a:Electronics vol. 14, no. 4 (2025), p. 713
Autor principal: Liu, Aifei
Altres autors: Zhou, Yuan, Li, Zi, Xie, Yuxuan, Cao Zeng, Liu, Zhiling
Publicat:
MDPI AG
Matèries:
Accés en línia:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3171007085
003 UK-CbPIL
022 |a 2079-9292 
024 7 |a 10.3390/electronics14040713  |2 doi 
035 |a 3171007085 
045 2 |b d20250101  |b d20251231 
084 |a 231458  |2 nlm 
100 1 |a Liu, Aifei  |u Yangtze River Delta Research Institute and and School of Software, Northwestern Polytechnical University, Taicang 215400, China; <email>zhouyuan153@mail.nwpu.edu.cn</email> (Y.Z.); <email>lizi@mail.nwpu.edu.cn</email> (Z.L.); <email>yxxie0721@mail.nwpu.edu.cn</email> (Y.X.) 
245 1 |a Simultaneous Source Number Detection and DOA Estimation Using Deep Neural Network and K2-Means Clustering with Prior Knowledge 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Source number detection and Direction-of-Arrival (DOA) estimation are usually addressed in two stages, leading to high computational load. This paper proposes a simple solution to efficiently estimate the source number and DOAs using deep neural network (DNN) and clustering, named DNN-C. By observing that sources in space are usually few, DNN-C uses a simple fully connected DNN to obtain a spatial spectrum. Then, the K2-means clustering is specially designed to extract the source information from the obtained spatial spectrum. In particular, to enable the proposed DNN-C with the ability to detect the mixed sources, we first develop a new strategy for training data generation, and provide a guideline for data balance setting. We then explore the prior knowledge of array signal processing and spatial spectrum to obtain a peak vector and propose to add a virtual peak into the peak vector, and thus transform the task of source detection as a binary clustering problem of noise and sources. Overall, DNN-C provides a lightweight solution to implement source number detection and DOA estimation simultaneously and efficiently. Its testing time is about 2 times less than the classical solution (i.e., minimum descriptive length and multiple signal classification, shortened as MDL-MUSIC) when the grid step is 1° Importantly, it is robust to nonuniform noise by nature and can identify the absence of sources. The effectiveness of DNN-C is verified by simulation results. Furthermore, the DNN-C model trained by simulated data shows its generalization to real data measured by a circular array of eight sensors. 
653 |a Simulation 
653 |a Signal processing 
653 |a Clustering 
653 |a Artificial neural networks 
653 |a Sensors 
653 |a Neural networks 
653 |a Signal classification 
653 |a Classification 
653 |a Sensor arrays 
653 |a Unmanned aerial vehicles 
653 |a Methods 
653 |a Algorithms 
653 |a Direction of arrival 
653 |a Localization 
653 |a Eigenvectors 
653 |a Vectors (mathematics) 
700 1 |a Zhou, Yuan  |u Yangtze River Delta Research Institute and and School of Software, Northwestern Polytechnical University, Taicang 215400, China; <email>zhouyuan153@mail.nwpu.edu.cn</email> (Y.Z.); <email>lizi@mail.nwpu.edu.cn</email> (Z.L.); <email>yxxie0721@mail.nwpu.edu.cn</email> (Y.X.) 
700 1 |a Li, Zi  |u Yangtze River Delta Research Institute and and School of Software, Northwestern Polytechnical University, Taicang 215400, China; <email>zhouyuan153@mail.nwpu.edu.cn</email> (Y.Z.); <email>lizi@mail.nwpu.edu.cn</email> (Z.L.); <email>yxxie0721@mail.nwpu.edu.cn</email> (Y.X.) 
700 1 |a Xie, Yuxuan  |u Yangtze River Delta Research Institute and and School of Software, Northwestern Polytechnical University, Taicang 215400, China; <email>zhouyuan153@mail.nwpu.edu.cn</email> (Y.Z.); <email>lizi@mail.nwpu.edu.cn</email> (Z.L.); <email>yxxie0721@mail.nwpu.edu.cn</email> (Y.X.) 
700 1 |a Cao Zeng  |u National Laboratory of Radar Signal Processing, School of Electronic Engineering, Xidian University, Xi’an 710072, China; <email>czeng@mail.xidian.edu.cn</email> 
700 1 |a Liu, Zhiling  |u Nanjing Electronic Equipment Institute, Nanjing 210007, China; <email>lzl_good@sina.com</email> 
773 0 |t Electronics  |g vol. 14, no. 4 (2025), p. 713 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3171007085/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3171007085/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3171007085/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch