Low-Complexity Ultrasonic Flowmeter Signal Processor Using Peak Detector-Based Envelope Detection
Guardado en:
| Publicado en: | Journal of Sensor and Actuator Networks vol. 14, no. 1 (2025), p. 12 |
|---|---|
| Autor principal: | |
| Otros Autores: | |
| Publicado: |
MDPI AG
|
| Materias: | |
| Acceso en línea: | Citation/Abstract Full Text + Graphics Full Text - PDF |
| Etiquetas: |
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
| Resumen: | Ultrasonic flowmeters are essential sensor devices widely used in remote metering systems, smart grids, and monitoring systems. In these environments, a low-power design is critical to maximize energy efficiency. Real-time data collection and remote consumption monitoring through remote metering significantly enhance network flexibility and efficiency. This paper proposes a low-complexity structure that ensures an accurate time-of-flight (ToF) estimation within an acceptable error range while reducing computational complexity. The proposed system utilizes Hilbert envelope detection and a differentiator-based parallel peak detector. It transmits and collects data through ultrasonic transmitter and receiver transducers and is designed for seamless integration as a node into wireless sensor networks (WSNs). The system can be involved in various IoT and industrial applications through high energy efficiency and real-time data transmission capabilities. The proposed structure was validated using the MATLAB software, with an LPG gas flowmeter as the medium. The results demonstrated a mean relative deviation of 5.07% across a flow velocity range of 0.1–1.7 m/s while reducing hardware complexity by 78.9% compared to the conventional FFT-based cross-correlation methods. This study presents a novel design integrating energy-efficient ultrasonic flowmeters into remote metering systems, smart grids, and industrial monitoring applications. |
|---|---|
| ISSN: | 2224-2708 |
| DOI: | 10.3390/jsan14010012 |
| Fuente: | Advanced Technologies & Aerospace Database |