Low-Complexity Ultrasonic Flowmeter Signal Processor Using Peak Detector-Based Envelope Detection

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of Sensor and Actuator Networks vol. 14, no. 1 (2025), p. 12
Hlavní autor: Yu, Myeong-Geon
Další autoři: Dong-Sun, Kim
Vydáno:
MDPI AG
Témata:
On-line přístup:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nab a2200000uu 4500
001 3171090133
003 UK-CbPIL
022 |a 2224-2708 
024 7 |a 10.3390/jsan14010012  |2 doi 
035 |a 3171090133 
045 2 |b d20250101  |b d20250228 
084 |a 231482  |2 nlm 
100 1 |a Yu, Myeong-Geon 
245 1 |a Low-Complexity Ultrasonic Flowmeter Signal Processor Using Peak Detector-Based Envelope Detection 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Ultrasonic flowmeters are essential sensor devices widely used in remote metering systems, smart grids, and monitoring systems. In these environments, a low-power design is critical to maximize energy efficiency. Real-time data collection and remote consumption monitoring through remote metering significantly enhance network flexibility and efficiency. This paper proposes a low-complexity structure that ensures an accurate time-of-flight (ToF) estimation within an acceptable error range while reducing computational complexity. The proposed system utilizes Hilbert envelope detection and a differentiator-based parallel peak detector. It transmits and collects data through ultrasonic transmitter and receiver transducers and is designed for seamless integration as a node into wireless sensor networks (WSNs). The system can be involved in various IoT and industrial applications through high energy efficiency and real-time data transmission capabilities. The proposed structure was validated using the MATLAB software, with an LPG gas flowmeter as the medium. The results demonstrated a mean relative deviation of 5.07% across a flow velocity range of 0.1–1.7 m/s while reducing hardware complexity by 78.9% compared to the conventional FFT-based cross-correlation methods. This study presents a novel design integrating energy-efficient ultrasonic flowmeters into remote metering systems, smart grids, and industrial monitoring applications. 
653 |a Accuracy 
653 |a Flow velocity 
653 |a Microprocessors 
653 |a Envelope detection 
653 |a Automatic meter reading 
653 |a Sensors 
653 |a Signal processing 
653 |a Wireless sensor networks 
653 |a Remote monitoring 
653 |a Design 
653 |a Industrial applications 
653 |a Energy efficiency 
653 |a Data transmission 
653 |a Transmitters 
653 |a Algorithms 
653 |a Complexity 
653 |a Smart grid 
653 |a Real time 
653 |a Cross correlation 
653 |a Energy consumption 
653 |a Data collection 
653 |a Flowmeters 
653 |a Internet of Things 
700 1 |a Dong-Sun, Kim 
773 0 |t Journal of Sensor and Actuator Networks  |g vol. 14, no. 1 (2025), p. 12 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3171090133/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3171090133/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3171090133/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch