Smoothie: Efficient Inference of Spatial Co-expression Networks from Denoised Spatial Transcriptomics Data

محفوظ في:
التفاصيل البيبلوغرافية
الحاوية / القاعدة:bioRxiv (Mar 2, 2025)
المؤلف الرئيسي: Chase Holdener
مؤلفون آخرون: Iwijn De Vlaminck
منشور في:
Cold Spring Harbor Laboratory Press
الموضوعات:
الوصول للمادة أونلاين:Citation/Abstract
Full text outside of ProQuest
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
مستخلص:Finding correlations in spatial gene expression is fundamental in spatial transcriptomics, as co-expressed genes within a tissue are linked by regulation, function, pathway, or cell type. Yet, sparsity and noise in spatial transcriptomics data pose significant analytical challenges. Here, we introduce Smoothie, a method that denoises spatial transcriptomics data with Gaussian smoothing and constructs and integrates genome-wide co-expression networks. Utilizing implicit and explicit parallelization, Smoothie scales to datasets exceeding 100 million spatially resolved spots with fast run times and low memory usage. We demonstrate how co-expression networks measured by Smoothie enable precise gene module detection, functional annotation of uncharacterized genes, linkage of gene expression to genome architecture, and multi-sample comparisons to assess stable or dynamic gene expression patterns across tissues, conditions, and time points. Overall, Smoothie provides a scalable and versatile framework for extracting deep biological insights from high-resolution spatial transcriptomics data.Competing Interest StatementThe authors have declared no competing interest.Footnotes* https://doi.org/10.5281/zenodo.14933147
تدمد:2692-8205
DOI:10.1101/2025.02.26.640406
المصدر:Biological Science Database