Fault Detection Method Using Auto-Associative Shared Nearest Neighbor Kernel Regression for Industrial Processes

Guardado en:
Detalles Bibliográficos
Publicado en:Applied Sciences vol. 15, no. 5 (2025), p. 2251
Autor principal: Kim, Minseok
Otros Autores: Kim, Eunkyeong, Jung, Seunghwan, Kim, Baekcheon, Kim, Jinyong, Kim, Sungshin
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3176306249
003 UK-CbPIL
022 |a 2076-3417 
024 7 |a 10.3390/app15052251  |2 doi 
035 |a 3176306249 
045 2 |b d20250101  |b d20251231 
084 |a 231338  |2 nlm 
100 1 |a Kim, Minseok 
245 1 |a Fault Detection Method Using Auto-Associative Shared Nearest Neighbor Kernel Regression for Industrial Processes 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a As industrial systems grow larger and more interconnected, timely fault detection is essential to minimize downtime, enhance reliability, and reduce costs. However, conventional methods focus on reactive maintenance, limiting their ability to detect faults before escalation. Additionally, fault propagation in large-scale systems can degrade detection performance. To address these challenges, we propose an auto-associative shared nearest neighbor kernel regression method for fault detection in complex industrial processes. Inspired by attention mechanisms, the proposed approach assigns higher weights to relevant training data. Shared nearest neighbor is used to assess similarity between faults and training data, rescaling distances accordingly. These adjusted distances are then utilized in auto-associative kernel regression for fault detection. The performance of the proposed method is evaluated by applying it to benchmark data from the Tennessee Eastman Process and a real-world, unplanned shutdown case concerning a circulating fluidized bed boiler. The experimental results show that the proposed method can detect anomalies up to 2 h earlier than conventional fault detection methods. 
653 |a Distributed control systems 
653 |a Failure 
653 |a Statistical methods 
653 |a Parameter estimation 
700 1 |a Kim, Eunkyeong 
700 1 |a Jung, Seunghwan 
700 1 |a Kim, Baekcheon 
700 1 |a Kim, Jinyong 
700 1 |a Kim, Sungshin 
773 0 |t Applied Sciences  |g vol. 15, no. 5 (2025), p. 2251 
786 0 |d ProQuest  |t Publicly Available Content Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3176306249/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3176306249/fulltextwithgraphics/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3176306249/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch