Progress in the Development of Flexible Devices Utilizing Protein Nanomaterials

Guardado en:
Detalles Bibliográficos
Publicado en:Nanomaterials vol. 15, no. 5 (2025), p. 367
Autor principal: Zhang, Chunhong
Otros Autores: Zhang, Chenxi, Liu, Yongchun
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Resumen:Flexible devices are soft, lightweight, and portable, making them suitable for large-area applications. These features significantly expand the scope of electronic devices and demonstrate their unique value in various fields, including smart wearable devices, medical and health monitoring, human–computer interaction, and brain–computer interfaces. Protein materials, due to their unique molecular structure, biological properties, sustainability, self-assembly ability, and good biocompatibility, can be applied in electronic devices to significantly enhance the sensitivity, stability, mechanical strength, energy density, and conductivity of the devices. Protein-based flexible devices have become an important research direction in the fields of bioelectronics and smart wearables, providing new material support for the development of more environmentally friendly and reliable flexible electronics. Currently, many proteins, such as silk fibroin, collagen, ferritin, and so on, have been used in biosensors, memristors, energy storage devices, and power generation devices. Therefore, in this paper, we provide an overview of related research in the field of protein-based flexible devices, including the concept and characteristics of protein-based flexible devices, fabrication materials, fabrication processes, characterization, and evaluation, and we point out the future development direction of protein-based flexible devices.
ISSN:2079-4991
DOI:10.3390/nano15050367
Fuente:Materials Science Database